Sigma-additive set function: Difference between revisions

Content deleted Content added
Line 43:
===Modularity{{Anchor|modularity}}===
{{See also|Valuation (geometry)}}
{{See also|Valuation (measure theory)}}
 
A [[set function]] <math>\mu</math> on a [[family of sets]] <math>\mathcal{S}</math> is called a '''{{visible anchor|modular set function}}''' and a '''[[Valuation (geometry)|{{visible anchor|valuation}}]]''' if whenever <math>A,</math> <math>B,</math> <math>A\cup B,</math> and <math>A\cap B</math> are elements of <math>\mathcal{S},</math> then