Multiple-scale analysis: Difference between revisions

Content deleted Content added
m convert special characters found by Wikipedia:Typo Team/moss (via WP:JWB)
Line 12:
which is a second-order [[ordinary differential equation]] describing a [[nonlinear]] [[oscillator]]. A solution ''y''(''t'') is sought for small values of the (positive) nonlinearity parameter 0&nbsp;<&nbsp;''ε''&nbsp;≪&nbsp;1. The undamped Duffing equation is known to be a [[Hamiltonian system]]:
<math display="block">\frac{dp}{dt}=-\frac{\partial H}{\partial q}, \qquad \frac{dq}{dt}=+\frac{\partial H}{\partial p}, \quad \text{ with } \quad H = \tfrac12 p^2 + \tfrac12 q^2 + \tfrac14 \varepsilon q^4,</math>
with ''q''&nbsp;=&nbsp;''y''(''t'') and ''p''&nbsp;=&nbsp;''dy''/''dt''. Consequently, the Hamiltonian ''H''(''p'',&nbsp;''q'') is a conserved quantity, a constant, equal to ''H''&nbsp;=&nbsp;½{{sfrac|1|2}}&nbsp;+&nbsp;¼{{sfrac|1|4}}&nbsp;''ε'' for the given [[initial conditions]]. This implies that both ''y'' and ''dy''/''dt'' have to be bounded:
<math display="block">\left| y(t) \right| \le \sqrt{1 + \tfrac12 \varepsilon} \quad \text{ and } \quad \left| \frac{dy}{dt} \right| \le \sqrt{1 + \tfrac12 \varepsilon} \qquad \text{ for all } t.</math>