Neural architecture search: Difference between revisions

Content deleted Content added
Reinforcement learning: | Add: authors 1-5. | Use this tool. Report bugs. | #UCB_Gadget
ce
Line 17:
 
== Evolution ==
An alternative approach to NAS is based on [[evolutionary algorithm]]s, which has been employed by several groups.<ref>{{cite arXiv|last1=Real|first1=Esteban|last2=Moore|first2=Sherry|last3=Selle|first3=Andrew|last4=Saxena|first4=Saurabh|last5=Suematsu|first5=Yutaka Leon|last6=Tan|first6=Jie|last7=Le|first7=Quoc|last8=Kurakin|first8=Alex|date=2017-03-03|title=Large-Scale Evolution of Image Classifiers|eprint=1703.01041|class=cs.NE}}</ref><ref>{{Cite arXiv|last1=Suganuma|first1=Masanori|last2=Shirakawa|first2=Shinichi|last3=Nagao|first3=Tomoharu|date=2017-04-03|title=A Genetic Programming Approach to Designing Convolutional Neural Network Architectures|class=cs.NE|eprint=1704.00764v2|language=en}}</ref><ref name=":0">{{Cite arXiv|last1=Liu|first1=Hanxiao|last2=Simonyan|first2=Karen|last3=Vinyals|first3=Oriol|last4=Fernando|first4=Chrisantha|last5=Kavukcuoglu|first5=Koray|date=2017-11-01|title=Hierarchical Representations for Efficient Architecture Search|class=cs.LG|eprint=1711.00436v2|language=en}}</ref><ref name="Real 2018">{{cite arXiv|last1=Real|first1=Esteban|last2=Aggarwal|first2=Alok|last3=Huang|first3=Yanping|last4=Le|first4=Quoc V.|date=2018-02-05|title=Regularized Evolution for Image Classifier Architecture Search|eprint=1802.01548|class=cs.NE}}</ref><ref>{{cite arXiv|last1=Miikkulainen|first1=Risto|last2=Liang|first2=Jason|last3=Meyerson|first3=Elliot|last4=Rawal|first4=Aditya|last5=Fink|first5=Dan|last6=Francon|first6=Olivier|last7=Raju|first7=Bala|last8=Shahrzad|first8=Hormoz|last9=Navruzyan|first9=Arshak|last10=Duffy|first10=Nigel|last11=Hodjat|first11=Babak|date=2017-03-04|title=Evolving Deep Neural Networks|class=cs.NE|eprint=1703.00548}}</ref><ref>{{Cite book|last1=Xie|first1=Lingxi|last2=Yuille|first2=Alan|title=2017 IEEE International Conference on Computer Vision (ICCV) |chapter=Genetic CNN |chapter-url=https://ieeexplore.ieee.org/document/8237416|year=2017|pages=1388–1397|doi=10.1109/ICCV.2017.154|arxiv=1703.01513|isbn=978-1-5386-1032-9|s2cid=206770867}}</ref><ref name="Elsken 2018" /> An Evolutionary Algorithm for Neural Architecture Search generally performs the following procedure.<ref name="liu2021survey">{{cite journal|last1=Liu|first1=Yuqiao|last2=Sun|first2=Yanan|last3=Xue|first3=Bing|last4=Zhang|first4=Mengjie|last5=Yen|first5=Gary G|last6=Tan|first6=Kay Chen|title=A Survey on Evolutionary Neural Architecture Search|journal=IEEE Transactions on Neural Networks and Learning Systems|year=2021|volume=PP |issue=2 |pages=1–21|doi=10.1109/TNNLS.2021.3100554|pmid=34357870|arxiv=2008.10937|s2cid=221293236}}</ref> First a pool consisting of different candidate architectures along with their validation scores (fitness) is initialised. At each step the architectures in the candidate pool are mutated (e.g.: 3x3 convolution instead of a 5x5 convolution). Next the new architectures are trained from scratch for a few epochs and their validation scores are obtained. This is followed by replacing the lowest scoring architectures in the candidate pool with the better, newer architectures. This procedure is repeated multiple times and thus the candidate pool is refined over time. Mutations in the context of evolving ANNs are operations such as adding or removing a layer, which include changing the type of a layer (e.g., from convolution to pooling), changing the hyperparameters of a layer, or changing the training hyperparameters. On [[CIFAR-10]] and [[ImageNet]], evolution and RL performed comparably, while both slightly outperformed [[random search]].<ref name="Real 2018" /><ref name=":0" />
 
== Bayesian optimization ==
Line 52:
* {{cite arXiv |eprint=1905.01392 |class=cs.LG |first1=Martin |last1=Wistuba |first2=Ambrish |last2=Rawat |title=A Survey on Neural Architecture Search |date=2019-05-04 |last3=Pedapati |first3=Tejaswini}}
* {{Cite journal |last1=Elsken |first1=Thomas |last2=Metzen |first2=Jan Hendrik |last3=Hutter |first3=Frank |date=August 8, 2019 |title=Neural Architecture Search: A Survey |url=http://jmlr.org/papers/v20/18-598.html |journal=Journal of Machine Learning Research |volume=20 |issue=55 |pages=1–21 |arxiv=1808.05377}}
* {{cite journal |last1=Liu |first1=Yuqiao |last2=Sun |first2=Yanan |last3=Xue |first3=Bing |last4=Zhang |first4=Mengjie |last5=Yen |first5=Gary G |last6=Tan |first6=Kay Chen |year=2021 |title=A Survey on Evolutionary Neural Architecture Search |journal=IEEE Transactions on Neural Networks and Learning Systems |volume=PP |issue=2 |pages=1–21 |arxiv=2008.10937 |doi=10.1109/TNNLS.2021.3100554 |pmid=34357870 |s2cid=221293236}}
* {{cite arXiv |last1=White |first1=Colin |title=Neural Architecture Search: Insights from 1000 Papers |date=2023-01-25 |eprint=2301.08727 |last2=Safari |first2=Mahmoud |last3=Sukthanker |first3=Rhea |last4=Ru |first4=Binxin |last5=Elsken |first5=Thomas |last6=Zela |first6=Arber |last7=Dey |first7=Debadeepta |last8=Hutter |first8=Frank|class=cs.LG }}