Content deleted Content added
→Reinforcement learning: | Add: authors 1-5. | Use this tool. Report bugs. | #UCB_Gadget |
ce |
||
Line 17:
== Evolution ==
An alternative approach to NAS is based on [[evolutionary algorithm]]s, which has been employed by several groups.<ref>{{cite arXiv|last1=Real|first1=Esteban|last2=Moore|first2=Sherry|last3=Selle|first3=Andrew|last4=Saxena|first4=Saurabh|last5=Suematsu|first5=Yutaka Leon|last6=Tan|first6=Jie|last7=Le|first7=Quoc|last8=Kurakin|first8=Alex|date=2017-03-03|title=Large-Scale Evolution of Image Classifiers|eprint=1703.01041|class=cs.NE}}</ref><ref>{{Cite arXiv|last1=Suganuma|first1=Masanori|last2=Shirakawa|first2=Shinichi|last3=Nagao|first3=Tomoharu|date=2017-04-03|title=A Genetic Programming Approach to Designing Convolutional Neural Network Architectures|class=cs.NE|eprint=1704.00764v2|language=en}}</ref><ref name=":0">{{Cite arXiv|last1=Liu|first1=Hanxiao|last2=Simonyan|first2=Karen|last3=Vinyals|first3=Oriol|last4=Fernando|first4=Chrisantha|last5=Kavukcuoglu|first5=Koray|date=2017-11-01|title=Hierarchical Representations for Efficient Architecture Search|class=cs.LG|eprint=1711.00436v2|language=en}}</ref><ref name="Real 2018">{{cite arXiv|last1=Real|first1=Esteban|last2=Aggarwal|first2=Alok|last3=Huang|first3=Yanping|last4=Le|first4=Quoc V.|date=2018-02-05|title=Regularized Evolution for Image Classifier Architecture Search|eprint=1802.01548|class=cs.NE}}</ref><ref>{{cite arXiv|last1=Miikkulainen|first1=Risto|last2=Liang|first2=Jason|last3=Meyerson|first3=Elliot|last4=Rawal|first4=Aditya|last5=Fink|first5=Dan|last6=Francon|first6=Olivier|last7=Raju|first7=Bala|last8=Shahrzad|first8=Hormoz|last9=Navruzyan|first9=Arshak|last10=Duffy|first10=Nigel|last11=Hodjat|first11=Babak|date=2017-03-04|title=Evolving Deep Neural Networks|class=cs.NE|eprint=1703.00548}}</ref><ref>{{Cite book|last1=Xie|first1=Lingxi|last2=Yuille|first2=Alan|title=2017 IEEE International Conference on Computer Vision (ICCV) |chapter=Genetic CNN |chapter-url=https://ieeexplore.ieee.org/document/8237416|year=2017|pages=1388–1397|doi=10.1109/ICCV.2017.154|arxiv=1703.01513|isbn=978-1-5386-1032-9|s2cid=206770867}}</ref><ref name="Elsken 2018" /> An Evolutionary Algorithm for Neural Architecture Search generally performs the following procedure.<ref name="liu2021survey">{{cite journal|last1=Liu|first1=Yuqiao|last2=Sun|first2=Yanan|last3=Xue|first3=Bing|last4=Zhang|first4=Mengjie|last5=Yen|first5=Gary G|last6=Tan|first6=Kay Chen|title=A Survey on Evolutionary Neural Architecture Search|journal=IEEE Transactions on Neural Networks and Learning Systems|year=2021|volume=
== Bayesian optimization ==
Line 52:
* {{cite arXiv |eprint=1905.01392 |class=cs.LG |first1=Martin |last1=Wistuba |first2=Ambrish |last2=Rawat |title=A Survey on Neural Architecture Search |date=2019-05-04 |last3=Pedapati |first3=Tejaswini}}
* {{Cite journal |last1=Elsken |first1=Thomas |last2=Metzen |first2=Jan Hendrik |last3=Hutter |first3=Frank |date=August 8, 2019 |title=Neural Architecture Search: A Survey |url=http://jmlr.org/papers/v20/18-598.html |journal=Journal of Machine Learning Research |volume=20 |issue=55 |pages=1–21 |arxiv=1808.05377}}
* {{cite journal |last1=Liu |first1=Yuqiao |last2=Sun |first2=Yanan |last3=Xue |first3=Bing |last4=Zhang |first4=Mengjie |last5=Yen |first5=Gary G |last6=Tan |first6=Kay Chen |year=2021 |title=A Survey on Evolutionary Neural Architecture Search |journal=IEEE Transactions on Neural Networks and Learning Systems |volume=
* {{cite arXiv |last1=White |first1=Colin |title=Neural Architecture Search: Insights from 1000 Papers |date=2023-01-25 |eprint=2301.08727 |last2=Safari |first2=Mahmoud |last3=Sukthanker |first3=Rhea |last4=Ru |first4=Binxin |last5=Elsken |first5=Thomas |last6=Zela |first6=Arber |last7=Dey |first7=Debadeepta |last8=Hutter |first8=Frank|class=cs.LG }}
|