Content deleted Content added
m Ce |
Updated the article to reflect that the pre-print authored by Williams, Xu, Xu, and Zhou has been officially published in a peer-reviewed conference in 2024. |
||
Line 17:
}}</ref> The optimal number of field operations needed to multiply two square {{math|''n'' × ''n''}} matrices [[big O notation|up to constant factors]] is still unknown. This is a major open question in [[theoretical computer science]].
{{As of|
| last = Iliopoulos
| first = Costas S.
Line 48 ⟶ 36:
| url-status = dead
}}</ref><ref name="robinson">{{cite journal | last=Robinson | first=Sara | title=Toward an Optimal Algorithm for Matrix Multiplication | url=https://archive.siam.org/pdf/news/174.pdf | date=November 2005 | journal=SIAM News | volume=38 | issue=9 | quote=Even if someone manages to prove one of the conjectures—thereby demonstrating that {{math|1=''ω'' = 2}}—the wreath product approach is unlikely to be applicable to the large matrix problems that arise in practice. [...] the input matrices must be astronomically large for the difference in time to be apparent.}}</ref>
== Simple algorithms ==
Line 240 ⟶ 227:
}}</ref><ref>{{Cite web|last=Hartnett|first=Kevin|title=Matrix Multiplication Inches Closer to Mythic Goal|url=https://www.quantamagazine.org/mathematicians-inch-closer-to-matrix-multiplication-goal-20210323/|access-date=2021-04-01|website=Quanta Magazine|date=23 March 2021 |language=en}}</ref>
|-
| 2022 || 2.371866 || Duan, Wu, Zhou<ref name="dwz22"
{{cite arXiv |eprint=2210.10173 |class=cs.DS |first1=Ran |last1=Duan |first2=Hongxun |last2=Wu |title=Faster Matrix Multiplication via Asymmetric Hashing |last3=Zhou |first3=Renfei |year=2022}}</ref>
|-
|
|}
Line 267 ⟶ 255:
Since the output of the matrix multiplication problem is size <math>n^2</math>, we have <math>\omega(k) \geq 2</math> for all values of <math>k</math>. If one can prove for some values of <math>k</math> between 0 and 1 that <math>\omega(k) \leq 2</math>, then such a result shows that <math>\omega(k) = 2</math> for those <math>k</math>. The largest ''k'' such that <math>\omega(k) = 2</math> is known as the ''dual matrix multiplication exponent'', usually denoted ''α''. ''α'' is referred to as the "[[Duality (optimization)|dual]]" because showing that <math>\alpha = 1</math> is equivalent to showing that <math>\omega = 2</math>. Like the matrix multiplication exponent, the dual matrix multiplication exponent sometimes appears in the complexity of algorithms in numerical linear algebra and optimization.<ref>{{Cite journal|last1=Cohen|first1=Michael B.|last2=Lee|first2=Yin Tat|last3=Song|first3=Zhao|date=2021-01-05|title=Solving Linear Programs in the Current Matrix Multiplication Time|url=https://doi.org/10.1145/3424305|journal=Journal of the ACM|volume=68|issue=1|pages=3:1–3:39|doi=10.1145/3424305|issn=0004-5411|arxiv=1810.07896|s2cid=231955576 }}</ref>
The first bound on ''α'' is by [[Don Coppersmith|Coppersmith]] in 1982, who showed that <math>\alpha > 0.17227</math>.<ref>{{Cite journal|last=Coppersmith|first=D.|date=1982-08-01|title=Rapid Multiplication of Rectangular Matrices|url=https://epubs.siam.org/doi/10.1137/0211037|journal=SIAM Journal on Computing|volume=11|issue=3|pages=467–471|doi=10.1137/0211037|issn=0097-5397|url-access=subscription}}</ref> The current best peer-reviewed bound on ''α'' is <math>\alpha
==Related problems==
|