Content deleted Content added
m →top: clean up, removed: {{!}} IEEE Journals & Magazine {{!}} IEEE Xplore |
Citation bot (talk | contribs) Alter: url, issue. URLs might have been anonymized. Add: s2cid, arxiv, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 28/35 |
||
Line 15:
* '''Scaled noise:''' For each <math>t\geq 0</math> and <math>i=1,\dots,N</math>, we denote by <math>B^i_t</math> independent standard Brownian motions. The function <math>D:{\cal{X}}\to\R^s</math> incorporates the drift of the <math>i</math>th particle and determines the noise model. The most common choices are:
** ''Isotropic noise'', <math>D(\cdot) = \|\cdot \|</math>: In this case <math>s=1</math> and every component of the noise vector is scaled equally. This was used in the original version of the algorithm<ref name=":0" />.
** ''Anisotropic noise<ref>{{Citation |
* '''Hyperparameters:''' The parameter <math>\sigma \geq 0</math> scales the influence of the noise term. The parameter <math>\alpha \geq 0</math> determines the separation effect of the particles<ref name=":0" />:
** in the limit <math>\alpha\to 0</math> every particle is assigned the same weight and the consensus point is a regular mean.
Line 34:
=== Polarization ===
If the function <math> f</math> is multi-modal, i.e., has more than one global minimum, the standard CBO algorithm can only find one of these points. However, one can “polarize”<ref>{{Citation |
<math display="block">c_\alpha^j(x) = \frac{1}{\sum_{i=1}^N \omega_\alpha^j(x^i)} \sum_{i=1}^N x^i\ \omega_\alpha^j(x^i), \quad\text{ with }\quad \omega_\alpha^j(\,\cdot\,) = \mathrm{exp}(-\alpha f(\,\cdot\,))\, k(\cdot,x^j).
Line 44:
</math> determines the communication radius of particles. This choice corresponds to a local convex regularization of the objective function <math>f
</math>.
* [[Mean-shift algorithm|'''Mean-shift algorithm''']]<ref>{{Cite journal |
</math>, together with no noise (i.e. <math>\sigma = 0
</math>) and an Euler–Maruyama discretization with step size <math>dt=1
</math>, corresponds to the mean-shift algorithm.
* '''Bounded confidence model''': When choosing a constant objective function, no noise model, but also the special kernel function <math>k(x,\tilde x) = 1_{\|x-\tilde x\| \leq \kappa}
</math>, the SDE in {{EquationNote|2=(1)}} transforms to a ODE known as the bounded confidence model<ref>{{Cite journal |
== See also ==
|