Quadratic function: Difference between revisions

Content deleted Content added
While a surface may commonly be called "quadric", "quadratic" is overwhelmingly the usual term for a function.
golden ratio is important; also fixed references
Line 5:
[[Image:Polynomialdeg2.svg|thumb|right|A quadratic polynomial with two [[real number|real]] [[root of a polynomial|roots]] (crossings of the ''x'' axis) and hence no [[complex number|complex]] roots. Some other quadratic polynomials have their [[minimum]] above the ''x'' axis, in which case there are no real roots and two complex roots.]]
 
For example, a [[univariate]] (single-variable) quadratic function has the form<ref name="wolfram">{{cite web |last=Weisstein |first=Eric Wolfgang |title=Quadratic Equation |url=httphttps://mathworld.wolfram.com/QuadraticEquation.html |url-status=live title|archive-url=Quadratic Equation from Wolfram MathWorldhttps://web.archive.org/web/20200312030923/https://mathworld.wolfram.com/QuadraticEquation.html |archive-date=2020-03-12 |access-date=January 6, 2013-01-06 |website=[[MathWorld]]}}</ref>
 
:<math>f(x)=ax^2+bx+c,\quad a \ne 0,</math>
Line 59:
 
==Forms of a univariate quadratic function==
A univariate quadratic function can be expressed in three formats:<ref>{{Cite book |last=Hughes Hallett |first=Deborah J. |author-link=Deborah Hughes Hallett |title=College Algebra |last2=Connally |first2=Eric |author-link2=Eric Connally |last3=McCallum |first3=William George |author-link3=William G. McCallum |publisher=[[Wiley (publisher)|John Wiley & Sons Inc.]] |year=2007 |isbn=9780471271758 |page=205}}</ref>
A univariate quadratic function can be expressed in three formats:<ref>{{citation
|title=College Algebra
|first1=Deborah
|last1=Hughes-Hallett | author1-link = Deborah Hughes Hallett
|first2=Eric
|last2=Connally
|first3=William G.
|last3=McCallum | author3-link = William G. McCallum
|publisher=John Wiley & Sons Inc.
|year=2007
|isbn=9780471271758
|page=205
}}
</ref>
 
* <math>f(x) = a x^2 + b x + c</math> is called the '''standard form''',
Line 160 ⟶ 147:
===Upper bound on the magnitude of the roots===
 
The [[absolute value|modulus]] of the roots of a quadratic <math>ax^2+bx+c</math> can be no greater than <math>\frac{\max(|a|, |b|, |c|)}{|a|}\times \phi, </math> where <math>\phi</math> is the [[golden ratio]] <math>\frac{1+\sqrt{5}}{2}.</math><ref>{{Cite journal |last=Lord, |first=Nick, "|date=2007-11-01 |title=Golden boundsBounds for the rootsRoots of quadraticQuadratic equations",Equations |url=https://doi.org/10.2307/40378441 |journal=[[The ''Mathematical Gazette'']] |volume=91, November 2007,|issue=522 |pages=549.</ref>{{importance inline|<!--Formula doesn't scale under scale of ''x''; a realistic formula should scale by α when b ↦ bα and c ↦cα<sup>2via=[[JSTOR]]}}</supref>-->}}
 
==The square root of a univariate quadratic function==
Line 241 ⟶ 228:
==References==
{{Reflist}}
*{{Cite book |last=Glencoe |first=McGraw-Hill |title=Algebra 1 |isbn=9780078250835}}
*Algebra 1, Glencoe, {{isbn|0-07-825083-8}}
*{{Cite book |last=Saxon |first=John H. |title=Algebra 2 |isbn=9780939798629}}
*Algebra 2, Saxon, {{isbn|0-939798-62-X}}
 
==External links==