Content deleted Content added
m Reverted edits by 149.88.1.162 (talk) (AV) |
Citation bot (talk | contribs) Added bibcode. | Use this bot. Report bugs. | Suggested by Abductive | Category:Memory biases | #UCB_Category 27/41 |
||
Line 60:
==Neural evidence ==
Several brain imaging studies using [[positron emission tomography]] and [[functional magnetic resonance imaging]] techniques have shown that higher levels of processing [[correlate]] with more brain activity and activity in different parts of the brain than lower levels. For example, in a lexical analysis task, subjects showed activity in the [[prefrontal cortex|left inferior prefrontal cortex]] only when identifying whether the word represented a living or nonliving object, and not when identifying whether or not the word contained an "a".<ref>{{Cite journal| doi = 10.1073/pnas.91.6.2008| volume = 91| issue = 6| pages = 2008–2011| last = Kapur
| first = S|author2=FIM Craik |author3=E Tulving |author4=AA Wilson |author5=S Houle |author6=GM Brown | title = Neuroanatomical Correlates of Encoding in Episodic Memory: Levels of Processing Effect | journal = [[Proceedings of the National Academy of Sciences]] | year = 1994 | pmid = 8134340| pmc = 43298 | doi-access = free| bibcode = 1994PNAS...91.2008K}}</ref> Similarly, an auditory analysis task showed increased activation in the left inferior prefrontal cortex when subjects performed increasingly [[semantic]] word manipulations.<ref name = Fletcher/> Synaptic aspects of word recognition have been correlated with the [[Operculum (brain)|left frontal operculum]] and the cortex lining the junction of the inferior frontal and inferior precentral sulcus.<ref>{{Cite journal | doi = 10.1093/cercor/10.7.698 | volume = 10 | issue = 7
| pages = 698–705 | last = Friederici | first = AD |author2=Opitz B |author3=Yves von Cramon D | title = Segregating semantic and syntactic aspects of processing in the human brain: an fMRI investigation of different word types | journal = Cereb. Cortex | year = 2000 | url = http://cercor.oxfordjournals.org/cgi/reprint/10/7/698 | format = pdf | pmid = 10906316| doi-access = free | hdl = 11858/00-001M-0000-0010-D753-7 | hdl-access = free }}</ref> The self-reference effect also has neural correlates with a region of the medial [[prefrontal cortex]], which was activated in an experiment where subjects analyzed the relevance of data to themselves.<ref>{{Cite journal | last = Kelley | first = WM |author2=Macrae CN |author3=Wyland CL |author4=Caglar S |author5=Inati S |author6= Heatherton TF | title = Finding the self? An event-related fMRI study |year = 2002 | doi = 10.1162/08989290260138672 | pages = 785–794 | volume = 14 | issue = 5 | journal = Journal of Cognitive Neuroscience | pmid = 12167262 | citeseerx = 10.1.1.522.2494 | s2cid = 2917200 }}</ref> Specificity of processing is explained on a neurological basis by studies that show brain activity in the same ___location when a visual memory is encoded and retrieved, and lexical memory in a different ___location.<ref name = Vaidya2002/> Visual memory areas were mostly located within the bilateral [[Extrastriate cortex|extrastriate visual cortex]].
|