Conjugate transpose: Difference between revisions

Content deleted Content added
Pylade (talk | contribs)
Basic remarks: brought back the missing i in the formula
No edit summary
Line 68:
 
<math>
e^{i\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \cos \theta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sin \theta \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.
</math>
 
Line 77:
 
<math>
1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.
</math>
A general complex number <math>z=x+iy</math> is then represented as
 
<math>
z = \begin{pmatrix} x & -y \\ -y & x \end{pmatrix}.
</math>
The complex conjugate operation, where i→−i, is seen to be just the matrix transpose.