Content deleted Content added
mNo edit summary |
mNo edit summary |
||
Line 24:
==Example==
Consider a unit circle in <math display="inline">\mathbb{R}^2</math>, shrinking in on itself at a constant rate, i.e. each point on the boundary of the circle moves along its inwards pointing
If the field has a constant value subtracted from it in time, the zero level (which was the initial boundary) of the new fields will also be circular and will similarly collapse to a point. This is due to this being effectively the temporal integration of the [[Eikonal equation]] with a fixed front [[velocity]].
|