Length function: Difference between revisions

Content deleted Content added
some refs
Line 1:
{{unreferenced|date=November 2008}}
 
In the [[mathematics|mathematical]] field of [[geometric group theory]], a '''length function''' is a [[function (mathematics)|function]] that assigns a number to each element of a [[group (mathematics)|group]].
 
==Definition==
A '''length function''' ''L''&nbsp;:&nbsp;''G''&nbsp;&rarr;&nbsp;'''R'''<sup>+</sup> on a [[group (mathematics)|group]] ''G'' is a function satisfying:<ref>{{citation
| last = Lyndon | first = Roger C.
| doi = 10.7146/math.scand.a-10684
| journal = Mathematica Scandinavica
| jstor = 24489388
| mr = 163947
| pages = 209–234
| title = Length functions in groups
| volume = 12
| year = 1963}}</ref><ref>{{citation
| last = Harrison | first = Nancy
| doi = 10.2307/1996098
| journal = Transactions of the American Mathematical Society
| mr = 308283
| pages = 77–106
| title = Real length functions in groups
| volume = 174
| year = 1972}}</ref><ref>{{citation
| last = Chiswell | first = I. M.
| doi = 10.1017/S0305004100053093
| issue = 3
| journal = Mathematical Proceedings of the Cambridge Philosophical Society
| mr = 427480
| pages = 451–463
| title = Abstract length functions in groups
| volume = 80
| year = 1976}}</ref>
 
:<math>\begin{align}L(e) &= 0,\\