Sampling (signal processing): Difference between revisions

Content deleted Content added
m {{disambiguation needed}}
AnomieBOT (talk | contribs)
m Dating maintenance tags: {{Disambiguation needed}}
Line 36:
Although the use of [[oversampling]] can completely eliminate aperture error and aliasing by shifting them out of the passband, this technique cannot be practically used above a few GHz, and may be prohibitively expensive at much lower frequencies. Furthermore, while oversampling can reduce quantization error and non-linearity, it cannot eliminate these entirely. Consequently, practical ADCs at audio frequencies typically do not exhibit aliasing, aperture error, and are not limited by quantization error. Instead, analog noise dominates. At RF and microwave frequencies where oversampling is impractical and filters are expensive, aperture error, quantization error and aliasing can be significant limitations.
 
Jitter, noise, and quantization are often analyzed by modeling them as random errors added to the sample values. Integration and zero-order hold effects can be analyzed as a form of [[low-pass filter]]ing. The non-linearities of either ADC or DAC are analyzed by replacing the ideal [[linear function]] mapping with a proposed [[Nonlinear|nonlinear function]]{{disambiguation needed|date=April 2024}}.
 
== Applications ==