Multiplicative function: Difference between revisions

Content deleted Content added
Line 173:
</math>
for all positive integers <math>m, n</math> with <math>(m, n)=1</math>.
 
 
It is easy to see that an arithmetical function <math>f</math> not identically zero is quasimultiplicative if and only if <math>f(1)\ne 0</math> and
Line 181 ⟶ 180:
for all <math>m, n</math> with <math>(m, n)=1</math>. Then <math>c=f(1)</math>.
Quasimultiplicative functions are multiplicative functions
multiplied by a (nonzero) constant.
An arithmetical function <math>f</math> not identically zero is quasimultiplicative if and only if <math>f(1)\ne 0</math> and <math>f/f(1)</math> is multiplicative.
 
Line 208 ⟶ 207:
 
A nice characterization is as follows.
An arithmetical function <math>f</math> (not identically zero) is semimultiplicative if and only if
<math>
f(m)f(n)=f((m, n))f([m, n])
Line 245 ⟶ 244:
\left(\frac{f(ap^{\nu_p(n)-\nu_p(a)})}{f(a)}\right).
</math>
Note that some authors define that the function identically zero is multiplicative and thus quasimultiplicative etc.
 
 
==See also==