Partition function (statistical mechanics): Difference between revisions

Content deleted Content added
Added image and caption
Tags: Mobile edit Mobile app edit iOS app edit
Line 108:
====Classical continuous system (multiple identical particles)====
 
For a gas of <math> N </math> identical classical noninteracting particles in three dimensions, the partition function is
<math display="block"> Z=\frac{1}{N!h^{3N}} \int \, \exp \left(-\beta \sum_{i=1}^N H(\textbf q_i, \textbf p_i) \right) \; \mathrm{d}^3 q_1 \cdots \mathrm{d}^3 q_N \, \mathrm{d}^3 p_1 \cdots \mathrm{d}^3 p_N = \frac{Z_{\text{single}}^N}{N!}</math>
where