Content deleted Content added
m Moved the internal link to proper ___location |
m Moved citation to proper ___location. |
||
Line 119:
{{See also|Light scattering}}
[[File:Silica core fiber minimum attenuation.jpg|thumb|Experimentally measured record low attenuation of silica core optical fiber. At 1550 nm wavelength attenuation components are determined as follows: Rayleigh scattering loss ~ 0.1200 dB/km, infrared absorption loss ~ 0.0150 dB/km, impurity absorption loss ~ 0.0047 dB/km, waveguide imperfection loss ~ 0.0010 dB/km.<ref>{{Cite journal |last=Khrapko |first=R. |last2=Logunov |first2=S. L. |last3=Li |first3=M. |last4=Matthews |first4=H. B. |last5=Tandon |first5=P. |last6=Zhou |first6=C. |date=2024-04-15 |title=Quasi Single-Mode Fiber With Record-Low Attenuation of 0.1400 dB/km |url=https://ieeexplore.ieee.org/document/10458691/ |journal=IEEE Photonics Technology Letters |volume=36 |issue=8 |pages=539–542 |doi=10.1109/LPT.2024.3372786 |issn=1041-1135}}</ref>|260x260px]]
[[Attenuation]] in [[Optical fiber|fiber optics]], also known as transmission loss, is the reduction in intensity of the light beam (or signal) with respect to distance traveled through a transmission medium. Attenuation coefficients in fiber optics usually use units of dB/km through the medium due to the very high quality of transparency of modern optical transmission media. The medium is usually a fiber of silica glass that confines the incident light beam to the inside. Attenuation is an important factor limiting the transmission of a signal across large distances. In optical fibers the main attenuation source is scattering from molecular level irregularities ([[Rayleigh scattering]])<ref>I. P. Kaminow, T. Li (2002), Optical fiber telecommunications IV, [https://books.google.com/books?id=GlxnCiQlNwEC&pg=PA223 Vol. 1, p. 223] {{webarchive|url=https://web.archive.org/web/20130527231335/http://books.google.com/books?id=GlxnCiQlNwEC&q&f=false&pg=PA223 |date=2013-05-27 }}</ref> due to structural disorder and compositional fluctuations of the [[Amorphous solid|glass structure]]. This same phenomenon is seen as one of the limiting factors in the transparency of infrared missile domes.<ref>{{
==As camouflage==
|