Content deleted Content added
→Definitions: added C^𝛚 |
→Properties of analytic functions: small changes on the TeX |
||
Line 65:
* The [[Multiplicative inverse|reciprocal]] of an analytic function that is nowhere zero is analytic, as is the inverse of an invertible analytic function whose [[derivative]] is nowhere zero. (See also the [[Lagrange inversion theorem]].)
* Any analytic function is [[smooth function|smooth]], that is, infinitely differentiable. The converse is not true for real functions; in fact, in a certain sense, the real analytic functions are sparse compared to all real infinitely differentiable functions. For the complex numbers, the converse does hold, and in fact any function differentiable ''once'' on an open set is analytic on that set (see "analyticity and differentiability" below).
* For any [[open set]] <math>\Omega \subseteq \mathbb{C}</math>, the set ''A''(Ω) of all analytic functions <math>u
A polynomial cannot be zero at too many points unless it is the zero polynomial (more precisely, the number of zeros is at most the degree of the polynomial). A similar but weaker statement holds for analytic functions. If the set of zeros of an analytic function ƒ has an [[accumulation point]] inside its [[___domain of a function|___domain]], then ƒ is zero everywhere on the [[connected space|connected component]] containing the accumulation point. In other words, if (''r<sub>n</sub>'') is a [[sequence]] of distinct numbers such that ƒ(''r''<sub>''n''</sub>) = 0 for all ''n'' and this sequence [[limit of a sequence|converges]] to a point ''r'' in the ___domain of ''D'', then ƒ is identically zero on the connected component of ''D'' containing ''r''. This is known as the [[identity theorem]].
|