Universal approximation theorem: Difference between revisions

Content deleted Content added
No edit summary
Line 45:
 
=== Variants ===
Discontinuous activation functions,<ref name="leshno" /> noncompact domains,<ref name="kidger" /><ref>{{Cite journal |last1=van Nuland |first1=Teun |year=2024 |title=Noncompact uniform universal approximation |url=https://doi.org/10.1016/j.neunet.2024.106181 |journal=Neural Networks |volume=173}}</ref> certifiable networks,<ref>{{cite conference |last1=Baader |first1=Maximilian |last2=Mirman |first2=Matthew |last3=Vechev |first3=Martin |date=2020 |title=Universal Approximation with Certified Networks |url=https://openreview.net/forum?id=B1gX8kBtPr |conference=ICLR}}</ref>
random neural networks,<ref>{{Cite journal |last1=Gelenbe |first1=Erol |last2=Mao |first2=Zhi Hong |last3=Li |first3=Yan D. |year=1999 |title=Function approximation with spiked random networks |url=https://zenodo.org/record/6817275 |journal=IEEE Transactions on Neural Networks |volume=10 |issue=1 |pages=3–9 |doi=10.1109/72.737488 |pmid=18252498}}</ref> and alternative network architectures and topologies.<ref name="kidger" /><ref>{{Cite conference |last1=Lin |first1=Hongzhou |last2=Jegelka |first2=Stefanie |date=2018 |title=ResNet with one-neuron hidden layers is a Universal Approximator |url=https://papers.nips.cc/paper/7855-resnet-with-one-neuron-hidden-layers-is-a-universal-approximator |publisher=Curran Associates |volume=30 |pages=6169–6178 |journal=Advances in Neural Information Processing Systems}}</ref>