Cosmological lithium problem: Difference between revisions

Content deleted Content added
Line 118:
Dark matter decay and [[supersymmetry]] provide one possibility, in which decaying dark matter scenarios introduce a rich array of novel processes that can alter light elements during and after BBN, and find the well-motivated origin in supersymmetric cosmologies. With the fully operational [[Large Hadron Collider]] (LHC), much of minimal supersymmetry lies within reach, which would revolutionize particle physics and cosmology if discovered;<ref name="fields11" /> however, results from the ATLAS experiment in 2020 have excluded many supersymmetric models.<ref>{{Cite journal|last=Collaboration|first=Atlas|year=2021|title=Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb$^{-1}$ of $\sqrt{s}$ =13 TeV $pp$ collision data with the ATLAS detector|journal=Jhep |volume=02 |page=143 |language=en|doi=10.1007/JHEP02(2021)143|arxiv=2010.14293 |s2cid=256039464 }}</ref><ref>{{Cite web|last=Sutter|first=Paul|date=2021-01-07|title=From squarks to gluinos: It's not looking good for supersymmetry|url=https://www.space.com/no-signs-supersymmetry-large-hadron-collider|access-date=2021-10-29|website=Space.com|language=en}}</ref>
 
Changing [[fundamental constants]] can be one possible solution, and it implies that first, atomic transitions in metals residing in high-[[redshift]] regions might behave differently from our own. Additionally, Standard Model couplings and particle masses might vary; third, and variation in nuclear physics parameters iswould be needed.<ref name="fields11" />
 
Nonstandard cosmologies indicate variation of the baryon to photon ratio in different regions. One proposal is a result of large-scale inhomogeneities in cosmic density, different from homogeneity defined in the [[cosmological principle]]. However, this possibility requires a large amount of observations to test it.<ref>{{Cite journal|last1=Holder|first1=Gilbert P.|last2=Nollett|first2=Kenneth M.|last3=van Engelen|first3=Alexander|date=June 2010|title=On Possible Variation in the Cosmological Baryon Fraction|journal=Astrophysical Journal|language=en|volume=716|issue=2|pages=907–913|doi=10.1088/0004-637X/716/2/907|arxiv=0907.3919 |bibcode=2010ApJ...716..907H |issn=0004-637X|doi-access=free}}</ref>