Content deleted Content added
No edit summary |
Mentioned that additional proofs of Lagrange inversion formula proofs exist (and added references) |
||
Line 17:
If the assertions about analyticity are omitted, the formula is also valid for [[formal power series]] and can be generalized in various ways: It can be formulated for functions of several variables; it can be extended to provide a ready formula for {{math|''F''(''g''(''z''))}} for any analytic function {{mvar|F}}; and it can be generalized to the case <math>f'(a)=0,</math> where the inverse {{mvar|g}} is a multivalued function.
The theorem was proved by [[Joseph Louis Lagrange|Lagrange]]<ref>{{cite journal |author=Lagrange, Joseph-Louis |year=1770 |title=Nouvelle méthode pour résoudre les équations littérales par le moyen des séries |journal=Histoire de l'Académie Royale des Sciences et Belles-Lettres de Berlin |pages=251–326 |url=http://bibliothek.bbaw.de/bbaw/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=02-hist/1768&seite:int=257}} https://archive.org/details/uvresdelagrange18natigoog/page/n13 (Note: Although Lagrange submitted this article in 1768, it was not published until 1770.)</ref> and generalized by [[Hans Heinrich Bürmann]],<ref>Bürmann, Hans Heinrich, "Essai de calcul fonctionnaire aux constantes ad-libitum," submitted in 1796 to the Institut National de France. For a summary of this article, see: {{cite book |editor=Hindenburg, Carl Friedrich |title=Archiv der reinen und angewandten Mathematik |trans-title=Archive of pure and applied mathematics |___location=Leipzig, Germany |publisher=Schäferischen Buchhandlung |year=1798 |volume=2 |chapter=Versuch einer vereinfachten Analysis; ein Auszug eines Auszuges von Herrn Bürmann |trans-chapter=Attempt at a simplified analysis; an extract of an abridgement by Mr. Bürmann |pages=495–499 |chapter-url=https://books.google.com/books?id=jj4DAAAAQAAJ&pg=495}}</ref><ref>Bürmann, Hans Heinrich, "Formules du développement, de retour et d'integration," submitted to the Institut National de France. Bürmann's manuscript survives in the archives of the École Nationale des Ponts et Chaussées [National School of Bridges and Roads] in Paris. (See ms. 1715.)</ref><ref>A report on Bürmann's theorem by Joseph-Louis Lagrange and Adrien-Marie Legendre appears in: [http://gallica.bnf.fr/ark:/12148/bpt6k3217h.image.f22.langFR.pagination "Rapport sur deux mémoires d'analyse du professeur Burmann,"] ''Mémoires de l'Institut National des Sciences et Arts: Sciences Mathématiques et Physiques'', vol. 2, pages 13–17 (1799).</ref> both in the late 18th century. There is a straightforward derivation using [[complex analysis]] and [[contour integration]];<ref>[[E. T. Whittaker]] and [[G. N. Watson]]. ''[[A Course of Modern Analysis]]''. Cambridge University Press; 4th edition (January 2, 1927), pp. 129–130</ref> the complex formal power series version is a consequence of knowing the formula for [[polynomial]]s, so the theory of [[analytic function]]s may be applied. Actually, the machinery from analytic function theory enters only in a formal way in this proof, in that what is really needed is some property of the [[Formal power series#Formal residue|formal residue]], and a more direct formal [[Formal power series#The Lagrange inversion formula|proof]] is available. In fact, the Lagrange inversion theorem has a number of additional rather different proofs, including ones using tree-counting arguments or induction<ref>{{cite book | last1=Richard | first1=Stanley | title=Enumerative combinatorics. Volume 1. | series =Cambridge Stud. Adv. Math. | volume=49 | ___location=Cambridge | publisher=[[Cambridge University Press]] | year=2012 | isbn=978-1-107-60262-5 | mr=2868112 }}</ref><ref>{{Citation |last1=Ira|first1=Gessel |date=2016 |title=Lagrange inversion |journal=Journal of Combinatorial Theory, Series A |volume=144 |language=en |pages=212-249 |doi=10.1016/j.jcta.2016.06.018 |arxiv=1609.05988|mr=MR3534068}}</ref><ref>{{Citation |last1=Surya|first1=Erlang |last2=Warnke |first2=Lutz |date=2023 |title=Lagrange Inversion Formula by Induction |journal=The American Mathematical Monthly |volume=130 |issue=10 |language=en |pages=944–948 |doi=10.1080/00029890.2023.2251344 |arxiv=2305.17576|mr=4669236}}</ref>.
|