Taylor scraping flow: Difference between revisions

Content deleted Content added
Tags: Mobile edit Mobile web edit
Tags: Mobile edit Mobile web edit
Line 70:
where <math>m_z</math> and <math>n</math> are constants. The solution for the streamfunction of the flow created by the plate moving towards right is given by
 
:<math>\psi = Ur\left\{\left[1-\frac{\mathcal J_1(\theta)}{\mathcal J_1(\alpha)}\right]\sin\theta + \frac{\mathcal J_2(\theta)}{\mathcal J_1(\alpha)}\cos\theta\right\} </math>
 
where
 
:<math>\begin{align}
\mathcal J_1 &= \mathrm{sgn}(F) \int_0^\theta |F|^{1/n} \cos x\, dx,\\
\mathcal J_2 &= \mathrm{sgn}(F) \int_0^\theta |F|^{1/n} \sin x\, dx
\end{align}
</math>
Line 89:
</math>
 
where <math>C</math> is the root of <math>\mathcal J_2(\alpha)=0</math>. It can be verified that this solution reduces to that of Taylor's for Newtonian fluids, i.e., when <math>n=1</math>.
 
==References==