Deep backward stochastic differential equation method: Difference between revisions

Content deleted Content added
AzzurroLan (talk | contribs)
No edit summary
AzzurroLan (talk | contribs)
Line 2:
'''Deep BSDE''' (Deep Backward Stochastic Differential Equation) is a numerical method that combines [[deep learning]] with [[Backward stochastic differential equation]] (BSDE). This method is particularly useful for solving high-dimensional problems in [[financial derivatives]] pricing and [[risk management]]. By leveraging the powerful function approximation capabilities of [[deep neural networks]], deep BSDE addresses the computational challenges faced by traditional numerical methods in high-dimensional settings <ref name="Han2018">{{cite journal | last1=Han | first1=J. | last2=Jentzen | first2=A. | last3=E | first3=W. | title=Solving high-dimensional partial differential equations using deep learning | journal=Proceedings of the National Academy of Sciences | volume=115 | issue=34 | pages=8505-8510 | year=2018 }}</ref>.
==History==
BSDEs were first introduced by Pardoux and Peng in 1990 <ref name="Pardoux1990">{{cite journal | last1=Pardoux | first1=E. | last2=Peng | first2=S. | title=Adapted solution of a backward stochastic differential equation | journal=Systems & Control Letters | volume=14 | issue=1 | pages=55-61 | year=1990 }}</ref> and have since become essential tools in [[stochastic control]] and [[financial mathematics]]. In the 1990s, [[Étienne Pardoux]] and [[Shige Peng]] established the existence and uniqueness theory for BSDE solutions, applying BSDEs to financial mathematics and control theory. For instance, BSDEs have been widely used in option pricing, risk measurement, and dynamic hedging.
 
For instance, BSDEs have been widely used in option pricing, risk measurement, and dynamic hedging.
 
[[Deep Learning]] is a [[machine learning]] method based on multilayer [[neural networks]]. Its core concept can be traced back to the neural computing models of the 1940s. In the 1980s, the proposal of the [[backpropagation]] algorithm made the training of multilayer neural networks possible. In 2006, the [[Deep Belief Networks]] proposed by [[Geoffrey Hinton]] and others rekindled interest in deep learning. Since then, deep learning has made groundbreaking advancements in [[image processing]], [[speech recognition]], [[natural language processing]], and other fields.
 
As financial problems become more complex, traditional numerical methods for BSDEs (such as the [[Monte Carlo method]], [[finite difference method]], etc.) have shown limitations such as high computational complexity and the curse of dimensionality.
#In high-dimensional scenarios, the Monte Carlo method requires numerous simulation paths to ensure accuracy, resulting in lengthy computation times. In particular, for nonlinear BSDEs, the convergence rate is slow, making it challenging to handle complex financial derivative pricing problems.
#The finite difference method, on the other hand, experiences exponential growth in the number of computation grids with increasing dimensions, leading to significant computational and storage demands. This method is generally suitable for simple boundary conditions and low-dimensional BSDEs, but it is less effective in complex situations.
 
The combination of deep learning with BSDEs, known as deep BSDE, was proposed by Han, Jentzen, and E in 2018 as a solution to the high-dimensional challenges faced by traditional numerical methods<ref name="Han2018" />. The Deep BSDE approach leverages the powerful nonlinear fitting capabilities of deep learning, approximating the solution of BSDEs by constructing neural networks. The specific idea is to represent the solution of a BSDE as the output of a neural network and train the network to approximate the solution.
 
==Model==
===Mathematical Method===