Framebuffer: Difference between revisions

Content deleted Content added
m unpiped links using script
GreenC bot (talk | contribs)
Rescued 1 archive link. Wayback Medic 2.5 per WP:URLREQ#ieee.org
Line 10:
== History ==
[[File:SWAC 003.jpg|thumb|Memory pattern on [[SWAC (computer)|SWAC]] Williams tube CRT in 1951]]
Computer researchers{{who|date=July 2017}} had long discussed the theoretical advantages of a framebuffer, but were unable to produce a machine with sufficient [[computer memory|memory]] at an economically practicable cost.{{citation needed|date=August 2017}}<ref name="Gaboury">{{Cite journal|last=Gaboury|first=J.|date=2018-03-01|title=The random-access image: Memory and the history of the computer screen|journal=Grey Room|volume=70|url=https://escholarship.org/uc/item/0b3873pn|issue=70|pages=24–53|doi=10.1162/GREY_a_00233|s2cid=57565564|issn=1526-3819|hdl=21.11116/0000-0001-FA73-4|hdl-access=free}}</ref> In 1947, the [[Manchester Baby]] computer used a [[Williams tube]], later the Williams-Kilburn tube, to store 1024 bits on a [[cathode-ray tube|cathode-ray tube (CRT)]] memory and displayed on a second CRT.<ref>{{Cite journal|last1=Williams|first1=F. C.|last2=Kilburn|first2=T.|date=March 1949|title=A storage system for use with binary-digital computing machines|url=https://ieeexplore.ieee.org/document/5241129|archive-url=https://web.archive.org/web/20190426011059/https://ieeexplore.ieee.org/document/5241129|url-status=dead|archive-date=April 26, 2019|journal=Proceedings of the IEE - Part III: Radio and Communication Engineering|volume=96|issue=40|pages=81–|doi=10.1049/pi-3.1949.0018}}</ref><ref>{{Cite web|url=http://curation.cs.manchester.ac.uk/digital60/www.digital60.org/birth/manchestercomputers/mark1/documents/report1947cover.html|title=Kilburn 1947 Report Cover Notes (Digital 60)|website=curation.cs.manchester.ac.uk|access-date=2019-04-26}}</ref> Other research labs were exploring these techniques with [[MIT Lincoln Laboratory]] achieving a 4096 display in 1950.<ref name="Gaboury" />
 
A color scanned display was implemented in the late 1960s, called the [[Brookhaven National Laboratory|Brookhaven]] RAster Display (BRAD), which used a [[drum memory]] and a television monitor.<ref>{{citation |author1=D. Ophir |author2=S. Rankowitz |author3=B. J. Shepherd |author4=R. J. Spinrad |title=BRAD: The Brookhave Raster Display |work=Communications of the ACM |volume=11 |number=6 |date=June 1968 |pages=415–416 |doi=10.1145/363347.363385|s2cid=11160780 |doi-access=free }}</ref> In 1969, A. Michael Noll of [[Bell Labs]] implemented a scanned display with a frame buffer, using [[magnetic-core memory]].<ref>{{cite journal |last=Noll |first=A. Michael |title=Scanned-Display Computer Graphics |journal=Communications of the ACM |volume=14 |number=3 |date=March 1971 |pages=145–150 |doi=10.1145/362566.362567|s2cid=2210619 |doi-access=free }}</ref> Later on, the Bell Labs system was expanded to display an image with a color depth of three bits on a standard color TV monitor.