Logical matrix: Difference between revisions

Content deleted Content added
→cite journal, encyc, book, tweak cites
Line 47:
 
If the Boolean ___domain is viewed as a [[semiring]], where addition corresponds to [[logical OR]] and multiplication to [[logical AND]], the matrix representation of the [[composition of relations|composition]] of two relations is equal to the [[matrix product]] of the matrix representations of these relations.
This product can be computed in [[Expected value|expected]] time O(''n''<sup>2</sup>).<ref>{{cite journal| author|first=Patrick E. |last=O'Neil | author2first2= Elizabeth J. |last2=O'Neil|author2-link=Elizabeth O'Neil| title=A Fast Expected Time Algorithm for Boolean Matrix Multiplication and Transitive Closure| journal=[[Information and Control]]| year=1973| volume=22| issue=2 |pages=132–138132–8| doi=10.1016/s0019-9958(73)90228-3| doi-access=}} &mdash; The algorithm relies on addition being [[idempotent]], cf. p.134 (bottom).</ref>
 
Frequently, operations on binary matrices are defined in terms of [[modular arithmetic]] mod 2&mdash;that is, the elements are treated as elements of the [[Galois field]] <math>\bold{GF}(2) = \mathbb{Z}_2</math>. They arise in a variety of representations and have a number of more restricted special forms. They are applied e.g. in [[XOR-satisfiability]].<!---more links to applications should go here--->
Line 63:
As a mathematical structure, the Boolean algebra ''U'' forms a [[lattice (order)|lattice]] ordered by [[inclusion (logic)|inclusion]]; additionally it is a multiplicative lattice due to matrix multiplication.
 
Every logical matrix in ''U'' corresponds to a binary relation. These listed operations on ''U'', and ordering, correspond to a [[algebraic logic#Calculus of relations|calculus of relations]], where the matrix multiplication represents [[composition of relations]].<ref>[[{{cite journal |author-link=Irving Copilowish]] (December|first=Irving 1948).|last=Copilowish "|title=Matrix development of the calculus of relations", |journal=[[Journal of Symbolic Logic]] |volume=13( |issue=4): |pages=193–203 [https://www.jstor.org/stable/2267134?seq|date=1#page_scan_tab_contentsDecember Jstor1948 link]|jstor=2267134}}</ref>
 
==Logical vectors==
Line 71:
Suppose <math>(P_i),\, i=1,2,\ldots,m</math> and <math>(Q_j),\, j=1,2,\ldots,n</math> are two logical vectors. The [[outer product]] of ''P'' and ''Q'' results in an ''m'' × ''n'' [[rectangular relation]]
:<math>m_{ij} = P_i \land Q_j.</math>
A reordering of the rows and columns of such a matrix can assemble all the ones into a rectangular part of the matrix.<ref name=GS>{{cite book | doi=10.1017/CBO9780511778810 | isbn=9780511778810{{Format ISBN|9780511778810}} author|first=Gunther |last=Schmidt | page=91 | title=Relational Mathematics | chapter=6: Relations and Vectors | publisher=Cambridge University Press | year=2013 | author-link=Gunther Schmidt }}</ref>
 
Let ''h'' be the vector of all ones. Then if ''v'' is an arbitrary logical vector, the relation ''R'' = ''v h''<sup>T</sup> has constant rows determined by ''v''. In the [[calculus of relations]] such an ''R'' is called a vector.<ref name=GS/> A particular instance is the universal relation <math>hh^{\operatorname{T}}</math>.
Line 80:
 
==Row and column sums==
Adding up all the ones in a logical matrix may be accomplished in two ways: first summing the rows or first summing the columns. When the row sums are added, the sum is the same as when the column sums are added. In [[incidence geometry]], the matrix is interpreted as an [[incidence matrix]] with the rows corresponding to "points" and the columns as "blocks" (generalizing lines made of points). A row sum is called its ''point degree'', and a column sum is the ''block degree''. The sum of point degrees equals the sum of block degrees.<ref name=BJL>E.g., see {{cite bookencyclopedia |first1=Thomas |last1=Beth |first2=Dieter |last2=Jungnickel |author-link2=Dieter Jungnickel |first3=Hanfried |last3=Lenz |author-link3=Hanfried Lenz |chapter=I. Examples and basic definitions |title=Design Theory |encyclopedia=Encyclopedia of Mathematics and its Applications |volume=69 |publisher=[[Cambridge University Press]] |page=18 |year=1999 |edition=2nd |ISBNisbn=978-0-521-44432-3 |doi=10.1017/CBO9780511549533.001 }}</ref>
 
An early problem in the area was "to find necessary and sufficient conditions for the existence of an [[incidence structure]] with given point degrees and block degrees; or in matrix language, for the existence of a (0, 1)-matrix of type ''v''&nbsp;×&nbsp;''b'' with given row and column sums".<ref name=BJL/> This problem is solved by the [[Gale–Ryser theorem]].
Line 97:
 
==References==
{{refbegin}}
* [[Richard A. Brualdi]] (2006), ''Combinatorial Matrix Classes.'' Encyclopedia of Mathematics and its Applications, 108. Cambridge University Press, Cambridge, 2006. {{ISBN|978-0-521-86565-4}}
* {{cite encyclopedia |author-link=Richard A. Brualdi &|first=Richard Herbert JA. Ryser (1991),|last=Brualdi ''|title=Combinatorial Matrix Theory''.Classes |publisher=Cambridge University Press |encyclopedia=Encyclopedia of Mathematics and its Applications, 39.|volume=108 Cambridge University Press,|date=2006 Cambridge, 1991. {{ISBN|isbn=978-0-521-3226586565-04 |doi=10.1017/CBO9780511721182}}
* {{cite encyclopedia |first=Richard A. |last=Brualdi |first2=Herbert J. |last2=Ryser |title=Combinatorial Matrix Theory |publisher=Cambridge University Press |encyclopedia=Encyclopedia of Mathematics and its Applications |volume=39 |date=1991 |isbn=0-521-32265-0 |doi=10.1017/CBO9781107325708}}
* {{Citation |first=J.D. |last=Botha |chapter=31. Matrices over Finite Fields §31.3 Binary Matrices |edition=2nd |editor-last1=Hogben | editor-first1=Leslie|author1-link= Leslie Hogben | title=Handbook of Linear Algebra (Discrete Mathematics and Its Applications) | publisher=Chapman & Hall/CRC | ___locationisbn=Boca Raton{{Format ISBN| isbn=978-1-58488-510-89780429185533}} | year=2006}},2013 § 31|doi=10.3,1201/b16113 Binary Matrices}}
* {{Citation | last1=Kim | first1=Ki Hang|author-link=Ki-Hang Kim | title=Boolean Matrix Theory and Applications |year=1982| isbn=978-0-8247-1788-9}}
* [[{{cite journal |author-link=H. J. Ryser]] (1957),|first=H.J. |last=Ryser "|title=Combinatorial properties of matrices of zeroes and ones", |journal=[[Canadian Journal of Mathematics]] |volume=9: |issue= |pages=371–7. |date=1957 |doi= |url=}}
* {{cite journal |first=H.J. |last=Ryser (1960), "|title=Traces of matrices of zeroes and ones", ''|journal=Canadian Journal of Mathematics'' |volume=12: 463–76|issue= |pages=463–476 |date=1960 |doi=10.4153/CJM-1960-040-0 }}
* {{cite journal |first=H.J. |last=Ryser (1960), "|title=Matrices of Zeros and Ones", |journal=[[Bulletin of the American Mathematical Society]] |volume=66: 442–64|issue= |pages=442–464 |date=1960 |doi= |url=https://www.ams.org/journals/bull/1960-66-06/S0002-9904-1960-10494-6/S0002-9904-1960-10494-6.pdf}}
* [[{{cite journal |author-link=D. R. Fulkerson]] (1960)|first=D.R. |last=Fulkerson "|title=Zero-one matrices with zero trace", |journal=[[Pacific Journal of Mathematics]] |volume=10; |issue= |pages=831–6 |date=1960 |doi= |url=https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-10/issue-3/Zero-one-matrices-with-zero-trace/pjm/1103038231.pdf}}
* {{cite journal |first=D. R. |last=Fulkerson & |first2=H. J. |last2=Ryser (1961), "|title=Widths and heights of (0, 1)-matrices", ''|journal=Canadian Journal of Mathematics'' |volume=13: 239–55|issue= |pages=239–255 |date=1961 |doi=10.4153/CJM-1961-020-3 |url=}}
* [[{{cite book |author-link=L. R. Ford Jr.]] &|first=L.R. D|last=Ford Jr. |first2=D.R. |last2=Fulkerson (1962)|chapter=II. §Feasibility Theorems and Combinatorial Applications §2.12 "Matrices composed of 0's and 1's", pages|chapter-url=https://www.degruyter.com/document/doi/10.1515/9781400875184-004/html 79 to 91 in ''|title=Flows in Networks'', |publisher=[[Princeton University Press]] {{mr|id___location= |date=2016 |orig-year=1962 |isbn=9781400875184 |pages=79–91 |doi=10.1515/9781400875184-004 |MR=0159700}}
{{refend}}
 
==External links==