Schur-convex function: Difference between revisions

Content deleted Content added
Schur-Ostrowski criterion: i=j is trivially true
Line 18:
<math>(x_i - x_j)\left(\frac{\partial f}{\partial x_i} - \frac{\partial f}{\partial x_j}\right) \ge 0 </math> for all <math>x \in \mathbb{R}^d</math>
 
holds for all {{nowrap|1 ≤ ''i'' , ''j'' ≤ ''d''}}.<ref>{{cite book|last1=E. Peajcariaac|first1=Josip|last2=L. Tong|first2=Y.|title=Convex Functions, Partial Orderings, and Statistical Applications|date=3 June 1992 |publisher=Academic Press|isbn=9780080925226|page=333}}</ref>
 
== Examples ==