Content deleted Content added
Tito Omburo (talk | contribs) m Undid revision 1237323075 by OLiVEr fOsTEr wiKi aCCoUnT (talk) |
Erel Segal (talk | contribs) |
||
Line 49:
* A later algorithm by [[Harold W. Kuhn|Harold Kuhn]]<ref>{{Cite journal |last=Kuhn |first=Harold W. |date=1968 |title=Simplicial Approximation of Fixed Points |jstor=58762 |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=61 |issue=4 |pages=1238–1242 |doi=10.1073/pnas.61.4.1238 |pmid=16591723 |pmc=225246 |doi-access=free }}</ref> used simplices and simplicial partitions instead of primitive sets.
* Developing the simplicial approach further, Orin Harrison Merrill<ref>{{cite thesis |last1=Merrill |first1=Orin Harrison |date=1972 |title=Applications and Extensions of an Algorithm that Computes Fixed Points of Certain Upper Semi-continuous Point to Set Mappings |id={{NAID|10006142329}} |oclc=570461463 |url=https://www.proquest.com/openview/9bd010ff744833cb3a23ef521046adcb/1 }}</ref> presented the ''restart algorithm''.
* B. Curtis Eaves<ref>{{cite journal |last1=Eaves |first1=B. Curtis |title=Homotopies for computation of fixed points |journal=Mathematical Programming |date=December 1972 |volume=3-3 |issue=1 |pages=1–22 |doi=10.1007/BF01584975 |s2cid=39504380 }}</ref> presented the
* A book by Michael Todd<ref name=":1" /> surveys various algorithms developed until 1976. * [[David Gale]]<ref>{{cite journal |first1=David |last1=Gale |year=1979 |title=The Game of Hex and Brouwer Fixed-Point Theorem |journal=The American Mathematical Monthly |volume=86 |issue=10 |pages=818–827 |doi=10.2307/2320146 |jstor=2320146 }}</ref> showed that computing a fixed point of an ''n''-dimensional function (on the unit ''d''-dimensional cube) is equivalent to deciding who is the winner in a ''d''-dimensional game of [[Hex (board game)|Hex]] (a game with ''d'' players, each of whom needs to connect two opposite faces of a ''d''-cube). Given the desired accuracy ''{{mvar|ε}}''
** Construct a Hex board of size ''kd'', where <math>k > 1/\varepsilon</math>. Each vertex ''z'' corresponds to a point ''z''/''k'' in the unit ''n''-cube.
|