Jacobi elliptic functions: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Alter: url, journal. URLs might have been anonymized. Add: bibcode, doi. Removed URL that duplicated identifier. Removed access-date with no URL. | Use this bot. Report bugs. | Suggested by Abductive | Category:Special functions | #UCB_Category 115/143
Amplitude transformations: It is more natural to write the previous transformations in terms of sn, cn, dn; then they are globally valid and I think we already have them in the article. So I deleted that and replaced it with new amplitude transformations that are globally valid.
Line 392:
===Amplitude transformations===
 
In the following, the second variable is suppressed and is equal to <math>m</math>:
:<math>\operatorname{am}\left(\sqrt{m'}u,-\frac{m}{m'}\right)=\frac{\pi}{2}-\operatorname{am}(K-u,m),\quad u\in\mathbb{R},\, 0<m<1,</math>
 
:<math>\operatorname{am}(u,m')=-2\arctan\left(i\tan \frac{\operatorname{am}(iu,m)}{2}\right),\quad \left|\operatorname{Re}u\right|<K',\, \left|\operatorname{Im}u\right|<K,\, 0<m<1,</math>
:<math>\sin(\operatorname{am}\left(u+v)+\sqrtoperatorname{mam}(u,-v))=\frac{12\operatorname{sn}u\operatorname{mcn}u\right)=\arcsin(\sqrtoperatorname{dn}v}{1-m\operatorname{sn}^2u\operatorname{sn}(u^2v},m)),\quad -2K<u<2K,\, 0<m<1</math>
:<math>\cos(\operatorname{am}(u,m'+v)=-2\arctan\left(i\tan \frac{\operatorname{am}(iu,mu-v)}{2}\right),=\quad dfrac{\left|operatorname{cn}^2v-\operatorname{Resn}u^2v\right|<K',\, \left|operatorname{dn}^2u}{1-m\operatorname{Imsn}u^2u\right|<K,\, 0<m<1,operatorname{sn}^2v}.</math>
where both identities are valid for all <math>u,v,m\in\mathbb{C}</math> such that both sides are well-defined.
 
With
 
:<math>m_1=\left(\frac{1-\sqrt{m'}}{1+\sqrt{m'}}\right)^2,</math>
 
we have
 
:<math>\cos (\operatorname{am}(u,m)+\operatorname{am}(K-u,m))=-\operatorname{sn}((1-\sqrt{m'})u,1/m_1),</math>
:<math>\sin(\operatorname{am}(\sqrt{m'}u,-m/m')+\operatorname{am}((1-\sqrt{m'})u,1/m_1))=\operatorname{sn}(u,m),</math>
:<math>\sin(\operatorname{am}\left((1+\sqrt{m'})u,-m_1)+\fracoperatorname{mam}((1-\sqrt{m'}\right)u,1/m_1))=\frac{\pi}{sin(2}-\operatorname{am}(K-u,m),\quad u\in\mathbb{R},\, 0<m<1,)</math>
 
where all the identities are valid for all <math>u,m\in\mathbb{C}</math> such that both sides are well-defined.
 
==The Jacobi hyperbola==