Content deleted Content added
Line 35:
=== Quantitative bounds ===
The question of minimal possible width for universality was first studied in 2021, Park et al obtained the minimum width required for the universal approximation of ''[[Lp space|L<sup>p</sup>]]'' functions using feed-forward neural networks with [[Rectifier (neural networks)|ReLU]] as activation functions.<ref name="park">{{Cite conference |last1=Park |first1=Sejun |last2=Yun |first2=Chulhee |last3=Lee |first3=Jaeho |last4=Shin |first4=Jinwoo |date=2021 |title=Minimum Width for Universal Approximation |conference=International Conference on Learning Representations |arxiv=2006.08859}}</ref> Similar results that can be directly applied to [[residual neural network]]s were also obtained in the same year by Paulo Tabuada and Bahman Gharesifard using [[Control theory|control-theoretic]] arguments.<ref>{{Cite conference |last1=Tabuada |first1=Paulo |last2=Gharesifard |first2=Bahman |date=2021 |title=Universal approximation power of deep residual neural networks via nonlinear control theory |conference=International Conference on Learning Representations |arxiv=2007.06007}}</ref><ref>{{cite journal |last1=Tabuada |first1=Paulo |last2=Gharesifard |first2=Bahman |date=May 2023 |title=Universal Approximation Power of Deep Residual Neural Networks Through the Lens of Control |journal=IEEE Transactions on Automatic Control |volume=68 |issue=5 |pages=2715–2728 |doi=10.1109/TAC.2022.3190051 |s2cid=250512115}}{{Erratum|doi=10.1109/TAC.2024.3390099|checked=yes}}</ref> In 2023, Cai obtained the optimal minimum width bound for the universal approximation.<ref name=":1">{{Cite journal |last=Cai |first=Yongqiang |date=2023-02-01 |title=Achieve the Minimum Width of Neural Networks for Universal Approximation |url=https://openreview.net/forum?id=hfUJ4ShyDEU |journal=ICLR |language=en |arxiv=2209.11395}}</ref>
For the arbitrary depth case, Leonie Papon and Anastasis Kratsios derived explicit depth estimates depending on the regularity of the target function and of the activation function.<ref name="jmlr.org">{{Cite journal |last1=Kratsios |first1=Anastasis |last2=Papon |first2=Léonie |date=2022 |title=Universal Approximation Theorems for Differentiable Geometric Deep Learning |url=http://jmlr.org/papers/v23/21-0716.html |journal=Journal of Machine Learning Research |volume=23 |issue=196 |pages=1–73 |arxiv=2101.05390}}</ref>
=== Kolmogorov network ===
|