Sample complexity: Difference between revisions

Content deleted Content added
m top: clean up, typo(s) fixed: e.g, → e.g.,
Line 16:
Let <math>X</math> be a space which we call the input space, and <math>Y</math> be a space which we call the output space, and let <math>Z</math> denote the product <math>X\times Y</math>. For example, in the setting of binary classification, <math>X</math> is typically a finite-dimensional vector space and <math>Y</math> is the set <math>\{-1,1\}</math>.
 
Fix a hypothesis space <math>\mathcal H</math> of functions <math>h\colon X\to Y</math>. A learning algorithm over <math>\mathcal H</math> is a computable map from <math>Z^*</math> to <math>\mathcal H</math>. In other words, it is an algorithm that takes as input a finite sequence of training samples and outputs a function from <math>X</math> to <math>Y</math>. Typical learning algorithms include [[empirical risk minimization]], without or with [[Tikhonov regularization]].
 
Fix a loss function <math>\mathcal{L}\colon Y\times Y\to\R_{\geq 0}</math>, for example, the square loss <math>\mathcal{L}(y, y') = (y - y')^2</math>, where <math>h(x) = y'</math>. For a given distribution <math>\rho</math> on <math>X\times Y</math>, the '''expected risk''' of a hypothesis (a function) <math>h\in\mathcal H</math> is
Line 28:
<math display="block">
\Pr_{\rho^n}[\mathcal E(h_n) - \mathcal E^*_\mathcal{H}\geq\varepsilon]<\delta.
</math>The '''sample complexity''' of <math>\mathcal{A}</math> is then the minimum <math>N</math> for which this holds, as a function of <math>\rho, \epsilon</math>, and <math>\delta</math>. We write the sample complexity as <math>N(\rho, \epsilon, \delta)</math> to emphasize that this value of <math>N</math> depends on <math>\rho, \epsilon</math>, and <math>\delta</math>. If <math>\mathcal{A}</math> is '''not consistent''', then we set <math>N(\rho,\epsilon,\delta)=\infty</math>. If there exists an algorithm for which <math>N(\rho,\epsilon,\delta)</math> is finite, then we say that the hypothesis space <math> \mathcal H</math> is '''learnable'''.
</math>
The '''sample complexity''' of <math>\mathcal{A}</math> is then the minimum <math>N</math> for which this holds, as a function of <math>\rho, \epsilon</math>, and <math>\delta</math>. We write the sample complexity as <math>N(\rho, \epsilon, \delta)</math> to emphasize that this value of <math>N</math> depends on <math>\rho, \epsilon</math>, and <math>\delta</math>. If <math>\mathcal{A}</math> is '''not consistent''', then we set <math>N(\rho,\epsilon,\delta)=\infty</math>. If there exists an algorithm for which <math>N(\rho,\epsilon,\delta)</math> is finite, then we say that the hypothesis space <math> \mathcal H</math> is '''learnable'''.
 
In others words, the sample complexity <math>N(\rho,\epsilon,\delta)</math> defines the rate of consistency of the algorithm: given a desired accuracy <math>\epsilon</math> and confidence <math>\delta</math>, one needs to sample <math>N(\rho,\epsilon,\delta)</math> data points to guarantee that the risk of the output function is within <math>\epsilon</math> of the best possible, with probability at least <math>1 - \delta</math> .<ref name="Rosasco">{{citation |last = Rosasco | first = Lorenzo | title = Consistency, Learnability, and Regularization | series = Lecture Notes for MIT Course 9.520. | year = 2014 }}</ref>