Partition function (statistical mechanics): Difference between revisions

Content deleted Content added
Signs of $\lambda$ where incorrectly flipped halfway through the calculation. Signs are fixed, results obviously didn't change.
Line 47:
0 & \equiv \delta \mathcal{L} \\
&= \delta \left( - \sum_i k_\text{B} \rho_i \ln \rho_i \right) + \delta \left( \lambda_1 - \sum_i \lambda_1 \rho_i \right) + \delta \left( \lambda_2 U - \sum_i \lambda_2 \rho_i E_i \right) \\
&= \sum_i \bigg[ \delta \Big( - k_\text{B} \rho_i \ln \rho_i \Big) +- \delta \Big( \lambda_1 \rho_i \Big) +- \delta \Big( \lambda_2 E_i \rho_i \Big) \bigg] \\
&= \sum_i \left[ \frac{\partial}{\partial \rho_i } \Big( - k_\text{B} \rho_i \ln \rho_i \Big) \, \delta ( \rho_i ) +- \frac{\partial}{\partial \rho_i } \Big( \lambda_1 \rho_i \Big) \, \delta ( \rho_i ) +- \frac{\partial}{\partial \rho_i } \Big( \lambda_2 E_i \rho_i \Big) \, \delta ( \rho_i ) \right] \\
&= \sum_i \bigg[ -k_\text{B} \ln \rho_i - k_\text{B} +- \lambda_1 +- \lambda_2 E_i \bigg] \, \delta ( \rho_i ) .
\end{align}</math>
 
Since this equation should hold for any variation <math> \delta ( \rho_i ) </math>, it implies that
<math display="block"> 0 \equiv - k_\text{B} \ln \rho_i - k_\text{B} +- \lambda_1 +- \lambda_2 E_i .</math>
 
Isolating for <math> \rho_i </math> yields
<math display="block">\rho_i = \exp \left( \frac{-k_\text{B} +- \lambda_1 +- \lambda_2 E_i}{k_\text{B}} \right) .</math>
 
To obtain <math> \lambda_1 </math>, one substitutes the probability into the first constraint:
<math display="block">\begin{align}
1 &= \sum_i \rho_i \\
&= \exp \left( \frac{-k_\text{B} +- \lambda_1}{k_\text{B}} \right) Z ,
\end{align}</math>
where '''<math> Z </math> is a constant number defined as the canonical ensemble partition function''':
<math display="block">Z \equiv \sum_i \exp \left( - \frac{\lambda_2}{k_\text{B}} E_i \right) .</math>
 
Isolating for <math> \lambda_1 </math> yields <math> \lambda_1 = - k_\text{B} \ln(Z) +- k_\text{B} </math>.
 
Rewriting <math> \rho_i </math> in terms of <math> Z </math> gives
<math display="block"> \rho_i = \frac{1}{Z} \exp \left( - \frac{\lambda_2}{k_\text{B}} E_i \right) .</math>
 
Rewriting <math> S </math> in terms of <math> Z </math> gives
<math display="block">\begin{align}
S &= - k_\text{B} \sum_i \rho_i \ln \rho_i \\
&= - k_\text{B} \sum_i \rho_i \left( - \frac{\lambda_2}{k_\text{B}} E_i - \ln(Z) \right) \\
&= - \lambda_2 \sum_i \rho_i E_i + k_\text{B} \ln(Z) \sum_i \rho_i \\
&= - \lambda_2 U + k_\text{B} \ln(Z) .
\end{align}</math>
 
To obtain <math> \lambda_2 </math>, we differentiate <math> S </math> with respect to the average energy <math> U </math> and apply the [[first law of thermodynamics]], <math> dU = T dS - P dV </math>:
<math display="block">\frac{dS}{dU} = -\lambda_2 \equiv \frac{1}{T} .</math>
 
Thus the canonical partition function <math> Z </math> becomes