Content deleted Content added
RowanElder (talk | contribs) m Removed comma splice |
mNo edit summary |
||
Line 34:
:<math>d(x_{n+1}, x_n) \le q^n d(x_1, x_0).</math>
This follows by [[Principle of mathematical induction|induction]] on
: <math>\begin{align}
Line 44:
\end{align}</math>
Let
:<math>q^N < \frac{\varepsilon(1-q)}{d(x_1, x_0)}.</math>
Line 52:
:<math>d(x_m, x_n) \leq q^n d(x_1, x_0) \left ( \frac{1}{1-q} \right ) < \left (\frac{\varepsilon(1-q)}{d(x_1, x_0)} \right ) d(x_1, x_0) \left ( \frac{1}{1-q} \right ) = \varepsilon.</math>
This proves that the sequence <math>(x_n)_{n\in\mathbb N}</math> is Cauchy. By completeness of (''X'',''d''), the sequence has a limit <math>x^* \in X.</math> Furthermore, <math>x^*</math> must be a [[Fixed point (mathematics)|fixed point]] of
:<math>x^*=\lim_{n\to\infty} x_n = \lim_{n\to\infty} T(x_{n-1}) = T\left(\lim_{n\to\infty} x_{n-1} \right) = T(x^*). </math>
As a contraction mapping,
:<math> d(T(p_1),T(p_2)) = d(p_1,p_2) > q d(p_1, p_2).</math>
|