Content deleted Content added
No edit summary |
No edit summary |
||
Line 48:
[[Dynamic random-access memory]] (DRAM) allowed replacement of a 4 or 6-transistor latch circuit by a single transistor for each memory bit, greatly increasing memory density at the cost of volatility. Data was stored in the tiny capacitance of each transistor, and had to be periodically refreshed every few milliseconds before the charge could leak away.
[[Toshiba]]'s Toscal BC-1411 [[electronic calculator]], which was introduced in 1965,<ref>[http://collection.sciencemuseum.org.uk/objects/co8406093/toscal-bc-1411-calculator-with-electronic-calculator Toscal BC-1411 calculator]. {{webarchive|url=https://web.archive.org/web/20170729145228/http://collection.sciencemuseum.org.uk/objects/co8406093/toscal-bc-1411-calculator-with-electronic-calculator |date=2017-07-29 }}, [[Science Museum, London]].</ref><ref name="bc-spec" /><ref name="bc" /> used a form of
[[File:Bundesarchiv Bild 183-1989-0406-022, VEB Carl Zeiss Jena, 1-Megabit-Chip.jpg|thumb|right|CMOS 1-[[megabit]] (Mbit) DRAM chip, one of the last models developed by [[VEB Carl Zeiss Jena]] in 1989]]
The earliest DRAMs were often synchronized with the CPU clock (clocked) and were used with early microprocessors. In the mid-1970s, DRAMs moved to the asynchronous design, but in the 1990s returned to synchronous operation.<ref>{{cite book |author=P. Darche |url=https://books.google.com/books?id=rLC9zQEACAAJ |title=Microprocessor: Prolegomenes - Calculation and Storage Functions - Calculation Models and Computer |year=2020 |isbn=9781786305633 |page=59}}</ref><ref>{{cite book |author1=B. Jacob |url=https://books.google.com/books?id=SrP3aWed-esC |title=Memory Systems: Cache, DRAM, Disk |author2=S. W. Ng |author3=D. T. Wang |publisher=Morgan Kaufmann |year=2008 |isbn=9780080553849 |page=324}}</ref> In 1992 Samsung released KM48SL2000, which had a capacity of 16{{nbsp}}[[Mbit]].<ref name="electronic-design">{{cite journal |title=Electronic Design |journal=[[Electronic Design]] |date=1993 |volume=41 |issue=15–21 |url=https://books.google.com/books?id=QmpJAQAAIAAJ |publisher=Hayden Publishing Company |quote=The first commercial synchronous DRAM, the Samsung 16-Mbit KM48SL2000, employs a single-bank architecture that lets system designers easily transition from asynchronous to synchronous systems.}}</ref><ref>{{cite web |title=KM48SL2000-7 Datasheet |url=https://www.datasheetarchive.com/KM48SL2000-7-datasheet.html |publisher=[[Samsung]] |access-date=19 June 2019 |date=August 1992}}</ref> and mass-produced in 1993.<ref name="electronic-design"/> The first commercial [[DDR SDRAM]] ([[double data rate]] SDRAM) memory chip was Samsung's 64{{nbsp}}Mbit DDR SDRAM chip, released in June 1998.<ref>{{cite news |title=Samsung Electronics Develops First 128Mb SDRAM with DDR/SDR Manufacturing Option |url=https://www.samsung.com/semiconductor/insights/news-events/samsung-electronics-develops-first-128mb-sdram-with-ddr-sdr-manufacturing-option/ |access-date=23 June 2019 |work=[[Samsung Electronics]] |publisher=[[Samsung]] |date=10 February 1999}}</ref> [[GDDR]] (graphics DDR) is a form of DDR [[SGRAM]] (synchronous graphics RAM), which was first released by Samsung as a 16{{nbsp}}Mbit memory chip in 1998.<ref>{{cite news |title=Samsung Electronics Comes Out with Super-Fast 16M DDR SGRAMs |url=https://www.samsung.com/semiconductor/insights/news-events/samsung-electronics-comes-out-with-super-fast-16m-ddr-sgrams/ |access-date=23 June 2019 |work=[[Samsung Electronics]] |publisher=[[Samsung]] |date=17 September 1998}}</ref>
|