Content deleted Content added
mNo edit summary |
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
||
Line 33:
Variants of this basic approach have been applied to simulate a wide variety of mechanical systems involving elastic structures which interact with fluid flows.
Since the original development of this method by Peskin, a variety of approaches have been developed. These include stochastic formulations for microscopic systems, viscoelastic soft materials, complex fluids, such as the Stochastic Immersed Boundary Methods of Atzberger, Kramer, and Peskin,<ref>
{{Cite journal
| last = Atzberger
Line 49 ⟶ 48:
| s2cid = 6067032
}}
</ref>
{{Cite
| last1=Atzberger
Line 61 ⟶ 60:
| arxiv = 2212.10651
}}
</ref>
|last2=Lim |first2=S. |last3=Cortez |first3=R.
|title=Modeling the dynamics of an elastic rod with intrinsic curvature and twist using a regularized Stokes formulation |journal=Journal of Computational Physics |date=2013 |volume=238 |doi=10.1016/j.jcp.2012.12.026}}</ref>
{{Cite journal
| last = Atzberger
Line 80 ⟶ 77:
| s2cid = 6067032
}}
</ref><ref>{{cite journal |last1=Rower |first1=David A. |last2=Padidar |first2=Misha |last3=Atzberger |first3=Paul J. |title=Surface fluctuating hydrodynamics methods for the drift-diffusion dynamics of particles and microstructures within curved fluid interfaces |journal=Journal of Computational Physics |date=April 2022 |volume=455 |pages=110994 |doi=10.1016/j.jcp.2022.110994 |arxiv=1906.01146}}</ref>▼
Stochastic Eulerian Lagrangian Methods of Atzberger,<ref>{{Cite journal▼
▲<ref>{{cite journal |last1=Rower |first1=David A. |last2=Padidar |first2=Misha |last3=Atzberger |first3=Paul J. |title=Surface fluctuating hydrodynamics methods for the drift-diffusion dynamics of particles and microstructures within curved fluid interfaces |journal=Journal of Computational Physics |date=April 2022 |volume=455 |pages=110994 |doi=10.1016/j.jcp.2022.110994 |arxiv=1906.01146}}</ref>
▲Stochastic Eulerian Lagrangian Methods of Atzberger
| last = Atzberger
| first = Paul J.
Line 98 ⟶ 92:
| s2cid = 6067032
}}
</ref><ref>
{{Cite
| last1=Atzberger
Line 111 ⟶ 104:
| arxiv = 2212.10651
}}
</ref><ref>{{cite journal |last1=Atzberger |first1=Paul |title=Hydrodynamic Coupling of Particle Inclusions Embedded in Curved Lipid Bilayer Membranes |journal=Soft Matter, The Royal Society of Chemistry |date=2016 |volume=12 |pages=6685-6707 |doi=10.1039/C6SM00194G | arxiv=1601.06461}}▼
▲<ref>{{cite journal |last1=Atzberger |first1=Paul |title=Hydrodynamic Coupling of Particle Inclusions Embedded in Curved Lipid Bilayer Membranes |journal=Soft Matter, The Royal Society of Chemistry |date=2016 |volume=12 |pages=6685-6707 |doi=10.1039/C6SM00194G | arxiv=1601.06461}}
▲</ref>, Massed Immersed Boundary Methods of Moria
{{Cite journal
| last1 = Moria
Line 129 ⟶ 120:
| bibcode = 2008CMAME.197.2049M
}}
▲, and Rotational Immersed Boundary Methods of Olson, Lim, Cortez
|last2=Lim |first2=S. |last3=Cortez |first3=R.
|title=Modeling the dynamics of an elastic rod with intrinsic curvature and twist using a regularized Stokes formulation |journal=Journal of Computational Physics |date=2013 |volume=238 |doi=10.1016/j.jcp.2012.12.026}}</ref>
In general, for immersed boundary methods and related variants, there is an active research community that is still developing new techniques and related software implementations and incorporating related techniques into simulation packages and CAD engineering software. For more details see below.
|