Modello standard: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
IrishBot (discussione | contributi)
m Fix sezione == Cenni [...] == come da richiesta
Gab.pr (discussione | contributi)
Sfide al Modello standard: rimossi asterischi ad inizio patagrafo
Etichette: Modifica da mobile Modifica da web per mobile Modifica da mobile avanzata
Riga 120:
# Non prevede l'esistenza di [[materia oscura]]
 
* Fin dal completamento del Modello standard sono stati fatti molti sforzi per superare questi limiti e trasformarlo in una teoria completa. Un tentativo di superare il primo difetto è noto come ''grande unificazione'': le cosiddette [[Teoria della grande unificazione|GUT]] (''Grand unification theories'', teorie della grande unificazione) si prefiggono di unificare l'interazione forte ed elettrodebole e ipotizzano che i gruppi SU(3), SU(2) e U(1) non siano altro che dei sottogruppi di un altro gruppo di simmetria ancora più grande. Ad alte energie (al di fuori dalla portata degli esperimenti condotti) la simmetria del gruppo unificatore è recuperata: a energie più basse invece si riduce a SU(3)×SU(2)×U(1) per un processo noto come [[rottura spontanea di simmetria]]. La prima teoria di questo tipo venne proposta nel 1974 da [[Howard Georgi|Georgi]] e [[Sheldon Glashow|Glashow]], con il gruppo SU(5) come gruppo di unificazione. Una proprietà distintiva di queste GUT è che, diversamente dal Modello Standard, prevedono tutte il fenomeno del [[decadimento del protone|decadimento protonico]]. Nel 1999 l'osservatorio di neutrini [[Super-Kamiokande]] ha stabilito di non aver mai osservato un decadimento protonico, stabilendo così un limite inferiore all'ipotetica emivita (tempo di dimezzamento) del protone pari a 6,7× 10<sup>32</sup> anni. Questo ed altri esperimenti hanno invalidato, scartandole, numerose teorie GUT, fra cui quella basata sul gruppo SU(5). Una possibile indicazione sperimentale a supporto di un'unificazione delle interazioni è data dall'evoluzione delle [[Costante di accoppiamento|costanti di accoppiamento]] dei tre gruppi SU(3), SU(2) e U(1) all'aumentare della scala di energia (tecnicamente detto ''running'') che evolve in maniera tale che le costanti, estrapolate a grandi energie, tendono ad assumere valori vicini tra di loro. Tuttavia la convergenza dei valori delle costanti non è esatta, cosa che fa pensare all'esistenza di ulteriori fenomeni non ancora scoperti tra la scala di energia della massa e quella della grande unificazione.
 
* L'inclusione dell'interazione gravitazionale nel modello standard in una cosiddetta [[teoria del tutto]] passa evidentemente per una teoria, ancora mancante, che riesca a conciliare la [[relatività generale]] con la [[meccanica quantistica]]. Alcuni tentativi sono in corso in tal senso ([[teoria delle stringhe]], [[supergravità]] e altri), unacon parte dei quali si tenta a loro voltal'obiettivo di inquadrare inraggiungere un ulteriore più ampio assetto teorico denominato [[M-teoria]].
* La prima conferma sperimentale della deviazione dalla formulazione originale del Modello standard venne nel 1998, quando l'esperimento [[Super-Kamiokande]] pubblicò risultati che indicavano una [[oscillazione dei neutrini]] fra tipi diversi; questo implica che i neutrini abbiano una massa diversa da zero. Il Modello standard prevede invece che i neutrini abbiano massa nulla e di conseguenza viaggino alla velocità della luce; inoltre presuppone l'esistenza di neutrini solo sinistrorsi, ovvero con spin orientato nella direzione opposta al verso del loro moto. Se i neutrini hanno una massa la loro velocità deve essere inferiore a quella della luce ed è possibile che esistano neutrini destrosi (infatti sarebbe possibile ''sorpassare'' un neutrino, scegliendo un sistema di riferimento in cui la sua direzione di moto sia invertita senza influenzare il suo spin, rendendolo quindi destrorso). Da allora i fisici hanno rivisto il Modello Standard introducendo una massa per i neutrini, il che ha aggiunto 9 ulteriori parametri liberi (3 masse, 3 angoli di mixing e 3 fasi) oltre ai 19 iniziali; questo nuovo modello viene chiamato ancora Modello standard, nonostante le modifiche apportate.
 
* L'ipotesi della materia oscura, che dovrebbe costituire la maggior parte della materia esistente nell'[[universo]], deriva da varie osservazioni sperimentali che indicano effetti gravitazionali di grande entità in assenza di corrispondente materia direttamente osservabile con i normali mezzi che sfruttano l'interazione elettromagnetica. Nessuna previsione sulla natura di una tale materia è ricavabile dal Modello standard. Un'ulteriore estensione del modello, la teoria della [[supersimmetria]] (SUSY), propone una "compagna" supersimmetrica massiccia per ogni particella del Modello standard convenzionale e prevede l'esistenza di particelle stabili pesanti che hanno interazioni debolissime con la materia ordinaria. Tali particelle sono state candidate a spiegare la materia oscura, ma non esistono tuttora dati sperimentali a sostegno della teoria supersimmetrica.
* La prima conferma sperimentale della deviazione dalla formulazione originale del Modello standard venne nel 1998, quando l'esperimento [[Super-Kamiokande]] pubblicò risultati che indicavano una [[oscillazione dei neutrini]] fra tipi diversi; questo implica che i neutrini abbiano una massa diversa da zero. Il Modello standard prevede invece che i neutrini abbiano massa nulla e di conseguenza viaggino alla velocità della luce; inoltre presuppone l'esistenza di neutrini solo sinistrorsi, ovvero con spin orientato nella direzione opposta al verso del loro moto. Se i neutrini hanno una massa la loro velocità deve essere inferiore a quella della luce ed è possibile che esistano neutrini destrosidestrorsi (infatti sarebbe possibile ''sorpassare'' un neutrino, scegliendo un sistema di riferimento in cui la sua direzione di moto sia invertita senza influenzare il suo spin, rendendolo quindi destrorso). Da allora i fisici hanno rivisto il Modello Standard introducendo una massa per i neutrini, il che ha aggiunto 9 ulteriori parametri liberi (3 masse, 3 angoli di mixing e 3 fasi) oltre ai 19 iniziali; questo nuovo modello viene chiamato ancora Modello standard, nonostante le modifiche apportate.
 
* L'ipotesi della [[materia oscura]], che dovrebbe costituire la maggior parte della materia esistente nell'[[universo]], deriva da varie osservazioni sperimentali che indicano effetti gravitazionali di grande entità in assenza di corrispondente materia direttamente osservabile con i normali mezzi che sfruttano l'interazione elettromagnetica. Nessuna previsione sulla natura di una tale materia è ricavabile dal Modello standard. Un'ulteriore estensione del modello, la teoria della [[supersimmetria]] (SUSY), propone una "compagna" supersimmetrica massiccia per ogni particella del Modello standard convenzionale e prevede l'esistenza di particelle stabili pesanti che hanno interazioni debolissime con la materia ordinaria. Tali particelle sono state candidate a spiegare la materia oscura, ma non esistono tuttora dati sperimentali a sostegno della teoria supersimmetrica.
 
== Elenco delle particelle del Modello standard ==