Content deleted Content added
LucasBrown (talk | contribs) Adding local short description: "Set-theoretic function", overriding Wikidata description "process used for reaching large ordinals in the field of set theory" |
No edit summary Tags: Reverted Mobile edit Mobile web edit |
||
Line 1:
{{Short description|Set-theoretic function}}
{{No citations|date=June 2022}}
In [[mathematical logic]] and [[set theory]], an '''ordinal collapsing function''' (or '''projection function''') is a technique for defining ([[Ordinal notation|notations]] for) certain [[Recursive ordinal|recursive]] [[large countable ordinal]]s, whose principle is to give names to certain ordinals much larger than the one being defined, perhaps even [[Large cardinal property|large cardinals]] (though they can be replaced with [[Large countable ordinal#Beyond admissible ordinals|recursively large ordinals]] at the cost of extra technical difficulty), and then "collapse" them down to a system of notations for the sought-after ordinal. For this reason, ordinal collapsing functions are described as an [[Impredicativity|impredicative]] manner of naming ordinals.
The details of the definition of ordinal collapsing functions vary, and get more complicated as greater ordinals are being defined, but the typical idea is that whenever the notation system "runs out of fuel" and cannot name a certain ordinal, a much larger ordinal is brought "from above" to give a name to that critical point. An example of how this works will be detailed below, for an ordinal collapsing function defining the [[Bachmann–Howard ordinal]] (i.e., defining a system of notations up to the Bachmann–Howard ordinal).
The use and definition of ordinal collapsing functions is inextricably intertwined with the theory of [[ordinal analysis]], since the large countable ordinals defined and denoted by a given collapse are used to describe the ordinal-theoretic strength of certain [[formal system]]s, typically<ref name="Rathjen-survey">Rathjen, 1995 (Bull. Symbolic Logic)</ref><ref name="Kahle">Kahle, 2002 (Synthese)</ref> subsystems of [[second-order arithmetic|analysis]] (such as those seen in the light of [[reverse mathematics]]), extensions of [[Kripke–Platek set theory]], [[Errett Bishop|Bishop]]-style systems of [[Constructivism (mathematics)|constructive mathematics]] or [[Per Martin-Löf|Martin-Löf]]-style systems of [[intuitionistic type theory]].
Ordinal collapsing functions are typically denoted using some variation of either the Greek letter <math>\psi</math> ([[Psi (letter)|psi]]) or <math>\theta</math> ([[theta]]).
== An example leading up to the Bachmann–Howard ordinal ==
|