Carmichael function: Difference between revisions

Content deleted Content added
Removed superfluous wording from first sentence. Having "member of the set of positive integers" adds no clarity to the simpler "positive integer".
Line 75:
{{anchor|Carmichael's theorem}}
Carmichael proved two theorems that, together, establish that if {{math | ''λ''(''n'')}} is considered as defined by the recurrence of the previous section, then it satisfies the property stated in the introduction, namely that it is the smallest positive integer {{mvar | m}} such that <math>a^m\equiv 1\pmod{n}</math> for all {{mvar | a}} relatively prime to {{mvar | n}}.
{{Math theorem |name=Theorem 1|math_statement=If {{mvar | a}} is relatively prime to {{mvar | n}} then <math>a^{\lambda(n)}\equiv 1\pmod{n}</math>.<ref>CarmichaaelCarmichael (1914) p.40</ref>}}
This implies that the order of every element of the multiplicative group of integers modulo {{mvar | n}} divides {{math | ''λ''(''n'')}}. Carmichael calls an element {{mvar | a}} for which <math>a^{\lambda(n)}</math> is the least power of {{mvar | a}} congruent to 1 (mod {{mvar | n}}) a ''primitive λ-root modulo n''.<ref>Carmichael (1914) p.54</ref> (This is not to be confused with a [[primitive root modulo n|primitive root modulo {{mvar | n}}]], which Carmichael sometimes refers to as a primitive <math>\varphi</math>-root modulo {{mvar | n}}.)
{{Math theorem |name=Theorem 2|math_statement=For every positive integer {{mvar | n}} there exists a primitive {{mvar | λ}}-root modulo {{mvar | n}}. Moreover, if {{mvar | g}} is such a root, then there are <math>\varphi(\lambda(n))</math> primitive {{mvar | λ}}-roots that are congruent to powers of {{mvar | g}}.<ref>Carmichael (1914) p.55</ref>}}