Preference learning: Difference between revisions

Content deleted Content added
m grammar
Citation bot (talk | contribs)
Alter: url, pages, title, template type. URLs might have been anonymized. Add: chapter-url, volume, series, chapter, authors 1-1. Removed or converted URL. Removed parameters. Formatted dashes. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | #UCB_CommandLine
Line 3:
==Tasks==
 
The main task in preference learning concerns problems in "[[learning to rank]]". According to different types of preference information observed, the tasks are categorized as three main problems in the book ''Preference Learning'':<ref>{{Cite book |url=https://books.google.secom/books?id=nc3XcH9XSgYC&pg=PA4&redir_esc=y#v=onepage&q&f=false |title=Preference learning |date=2010 |publisher=Springer |isbn=978-3-642-14124-9 |editor-last=Fürnkranz |editor-first=Johannes |___location= |pages=3-83–8 |editor-last2=Hüllermeier |editor-first2=Eyke}}</ref>
 
===Label ranking===
Line 31:
===Preference relations===
 
The binary representation of preference information is called preference relation. For each pair of alternatives (instances or labels), a binary predicate can be learned by conventional supervised learning approach. Fürnkranz and Hüllermeier proposed this approach in label ranking problem.<ref name=":0">{{Cite journalbook |lastlast1=Fürnkranz |firstfirst1=Johannes |last2=Hüllermeier |first2=Eyke |chapter=Pairwise Preference Learning and Ranking |series=Lecture Notes in Computer Science |date=2003 |volume=2837 |editor-last=Lavrač |editor-first=Nada |editor2-last=Gamberger |editor2-first=Dragan |editor3-last=Blockeel |editor3-first=Hendrik |editor4-last=Todorovski |editor4-first=Ljupčo |title=Pairwise PreferenceMachine Learning: andECML Ranking2003 |chapter-url=https://link.springer.com/chapter/10.1007/978-3-540-39857-8_15 |journal=Machine Learning: ECML 2003 |language=en |___location=Berlin, Heidelberg |publisher=Springer |pages=145–156 |doi=10.1007/978-3-540-39857-8_15 |isbn=978-3-540-39857-8}}</ref> For object ranking, there is an early approach by Cohen et al.<ref>{{Cite journal |lastlast1=Cohen |firstfirst1=William W. |last2=Schapire |first2=Robert E. |last3=Singer |first3=Yoram |date=1998-07-31 |title=Learning to order things |url=https://dl.acm.org/doi/10.5555/302528.302736 |journal=NeurIPS |series= |___location=Cambridge, MA, USA |publisher=MIT Press |pages=451–457 |doi= |isbn=978-0-262-10076-2}}</ref>
 
Using preference relations to predict the ranking will not be so intuitive. Since observed preference relations may not always be transitive due to inconsistencies in the data, finding a ranking that satisfies all the preference relations may not be possible or may result in multiple possible solutions. A more common approach is to find a ranking solution which is maximally consistent with the preference relations. This approach is a natural extension of pairwise classification.<ref name=":0" />
Line 39:
Preference learning can be used in ranking search results according to feedback of user preference. Given a query and a set of documents, a learning model is used to find the ranking of documents corresponding to the [[relevance (information retrieval)|relevance]] with this query. More discussions on research in this field can be found in [[Tie-Yan Liu]]'s survey paper.<ref>{{Cite journal |last=Liu |first=Tie-Yan |date=2007 |title=Learning to Rank for Information Retrieval |url=http://www.nowpublishers.com/article/Details/INR-016 |journal=Foundations and Trends® in Information Retrieval |language=en |volume=3 |issue=3 |pages=225–331 |doi=10.1561/1500000016 |issn=1554-0669}}</ref>
 
Another application of preference learning is [[recommender systems]].<ref>{{Citation |lastlast1=Gemmis |firstfirst1=Marco de |title=Learning Preference Models in Recommender Systems |date=2010 |work=Preference Learning |pages=387–407 |editor-last=Fürnkranz |editor-first=Johannes |url=http://link.springer.com/10.1007/978-3-642-14125-6_18 |access-date=2024-11-05 |place= |publisher=Springer |language=en |doi=10.1007/978-3-642-14125-6_18 |isbn=978-3-642-14124-9 |last2=Iaquinta |first2=Leo |last3=Lops |first3=Pasquale |last4=Musto |first4=Cataldo |last5=Narducci |first5=Fedelucio |last6=Semeraro |first6=Giovanni |editor2-last=Hüllermeier |editor2-first=Eyke}}</ref> Online store may analyze customer's purchase record to learn a preference model and then recommend similar products to customers. Internet content providers can make use of user's ratings to provide more user preferred contents.
 
==References==