Content deleted Content added
→Function: Removed a whole paragraph devoted to a somwehat obscure theory of visual cortex. It did not represent a consensus view. Tags: references removed Visual edit |
→Function: removed irrelevant reference Tags: references removed Visual edit |
||
Line 81:
Notably, neurons in V1 have the smallest receptive field size, signifying the highest resolution, among visual cortex microscopic regions. This specialization equips V1 with the ability to capture fine details and nuances in the visual input, emphasizing its pivotal role as a critical hub in early visual processing and contributing significantly to our intricate and nuanced visual perception.<ref>{{cite journal | vauthors = Wu F, Lu Q, Kong Y, Zhang Z | title = A Comprehensive Overview of the Role of Visual Cortex Malfunction in Depressive Disorders: Opportunities and Challenges | journal = Neuroscience Bulletin | volume = 39 | issue = 9 | pages = 1426–1438 | date = September 2023 | pmid = 36995569 | pmc = 10062279 | doi = 10.1007/s12264-023-01052-7 }}</ref>
In addition to its role in spatial processing, the retinotopic map in V1 is intricately connected with other visual areas, forming a network that contributes to the integration of various visual features and the construction of a coherent visual percept. This dynamic mapping mechanism is fundamental to our ability to navigate and interpret the visual world effectively.<ref name= kepler1604 >Johannes Kepler (1604) Paralipomena to Witelo whereby The Optical Part of Astronomy is Treated (Ad Vitellionem Paralipomena, quibus astronomiae pars optica traditvr, 1604), as cited by A.Mark Smith (2015) From Sight to Light. Kepler modeled the eye as a water-filled glass sphere, and discovered that each point of the scene taken in by the eye projects onto a point on the back of the eye (the retina).</ref> The correspondence between a given ___location in V1 and in the subjective visual field is very precise: even the [[Blind spot (vision)|blind spots]] of the retina are mapped into V1. In terms of evolution, this correspondence is very basic and found in most animals that possess a V1. In humans and other animals with a [[Fovea centralis|fovea]] ([[Cone cell|cones]] in the retina), a large portion of V1 is mapped to the small, central portion of visual field, a phenomenon known as [[cortical magnification]].
The tuning properties of V1 neurons (what the neurons respond to) differ greatly over time. Early in time (40 ms and further) individual V1 neurons have strong tuning to a small set of stimuli. That is, the neuronal responses can discriminate small changes in visual [[Orientation (mental)|orientations]], [[spatial frequencies]] and [[color]]s (as in the optical system of a [[camera obscura]], but projected onto [[retina]]l cells of the eye, which are clustered in density and fineness).<ref name= kepler1604 /> Each V1 neuron propagates a signal from a retinal cell, in continuation. Furthermore, individual V1 neurons in humans and other animals with [[binocular vision]] have ocular dominance, namely tuning to one of the two eyes. In V1, and primary sensory cortex in general, neurons with similar tuning properties tend to cluster together as [[cortical column]]s. [[David Hubel]] and [[Torsten Wiesel]] proposed the classic ice-cube organization model of cortical columns for two tuning properties: [[ocular dominance columns|ocular dominance]] and orientation. However, this model cannot accommodate the color, spatial frequency and many other features to which neurons are tuned {{Citation needed|date=November 2011}}. The exact organization of all these cortical columns within V1 remains a hot topic of current research.
|