Square triangular number: Difference between revisions

Content deleted Content added
Dyspophyr (talk | contribs)
more sections
Line 6:
{{bi|left=1.6|0, 1, 36, {{val|1225}}, {{val|41616}}, {{val|1413721}}, {{val|48024900}}, {{val|1631432881}}, {{val|55420693056}}, {{val|1882672131025}} {{OEIS|id=A001110}}}}
 
==Solution as a Pell equation==
==Explicit formulas==
 
Write <math>N_k</math> for the <math>k</math>th square triangular number, and write <math>s_k</math> and <math>t_k</math> for the sides of the corresponding square and triangle, so that
Line 29:
The sequences <math>N_k</math>, <math>s_k</math> and <math>t_k</math> are the [[OEIS]] sequences {{OEIS2C|id=A001110}}, {{OEIS2C|id=A001109}}, and {{OEIS2C|id=A001108}} respectively.
 
==Explicit formulasformula==
In 1778 [[Leonhard Euler]] determined the explicit formula<ref name=Dickson>
{{cite book | last1 = Dickson | first1 = Leonard Eugene | author-link1 = Leonard Eugene Dickson |title = [[History of the Theory of Numbers]] | volume = 2 | publisher = American Mathematical Society | ___location = Providence | year = 1999 |orig-year = 1920 | page = 16 | isbn = 978-0-8218-1935-7 }}
Line 54 ⟶ 55:
 
==Recurrence relations==
ThereThe aresolution to the Pell equation can be expressed as a [[recurrence relation]]s for the equation's solutions. This can be translated into recurrence equations that directly express the square triangular numbers, as well as for the sides of the square and triangle involved. We have<ref>{{MathWorld|title=Square Triangular Number|urlname=SquareTriangularNumber}}</ref>{{Rp|(12)}}
 
There are [[recurrence relation]]s for the square triangular numbers, as well as for the sides of the square and triangle involved. We have<ref>{{MathWorld|title=Square Triangular Number|urlname=SquareTriangularNumber}}</ref>{{Rp|(12)}}
 
{{bi|left=1.6|<math>\displaystyle \begin{align}