Logarithm of a matrix: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Removed URL that duplicated identifier. Removed access-date with no URL. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Matrix theory | #UCB_Category 71/117
Ming mm (talk | contribs)
Line 78:
<math>
\sum_{k=0}^\infty{1 \over k!}B_n^k =\begin{pmatrix}
\sum_{k=0}^\infty{(-1)^k \over 2k!}(\alpha+2\pi n)^{2k} & -\sum_{k=0}^\infty{(-1)^k \over (2k+1)!}(\alpha+2\pi n)^{2k+1} \\
\sum_{k=0}^\infty{(-1)^k \over (2k+1)!}(\alpha+2\pi n)^{2k+1} & \sum_{k=0}^\infty{(-1)^k \over 2k!}(\alpha+2\pi n)^{2k} \\
\end{pmatrix} =\begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) \\
\sin(\alpha) & \cos(\alpha) \\