Content deleted Content added
m Open access bot: hdl updated in citation with #oabot. |
m v2.05b - Bot T20 CW#61 - Fix errors for CW project (Reference before punctuation) |
||
Line 33:
Research shows that [[Physician|physicians]] who experience VR simulations improved their dexterity and performance in the [[Operating theater|operating room]] significantly more than control groups.<ref name=":9">{{Cite journal |last1=Seymour |first1=Neal E. |last2=Gallagher |first2=Anthony G. |last3=Roman |first3=Sanziana A. |last4=O'Brien |first4=Michael K. |last5=Bansal |first5=Vipin K. |last6=Andersen |first6=Dana K. |last7=Satava |first7=Richard M. |date=October 2002 |title=Virtual Reality Training Improves Operating Room Performance: Results of a Randomized, Double-Blinded Study |journal=Annals of Surgery |volume=236 |issue=4 |pages=458–63; discussion 463–4 |doi=10.1097/00000658-200210000-00008 |pmc=1422600 |pmid=12368674}}</ref><ref name=":19">{{Cite journal |last1=Ahlberg |first1=Gunnar |last2=Enochsson |first2=Lars |last3=Gallagher |first3=Anthony G. |last4=Hedman |first4=Leif |last5=Hogman |first5=Christian |last6=McClusky III |first6=David A. |last7=Ramel |first7=Stig |last8=Smith |first8=C. Daniel |last9=Arvidsson |first9=Dag |date=2007-06-01 |title=Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies |journal=The American Journal of Surgery |volume=193 |issue=6 |pages=797–804 |doi=10.1016/j.amjsurg.2006.06.050 |pmid=17512301}}</ref><ref name=":20">{{Cite journal |last1=Colt |first1=Henri G. |last2=Crawford |first2=Stephen W. |last3=Galbraith III |first3=Oliver |date=2001-10-01 |title=Virtual reality bronchoscopy simulation*: A revolution in procedural training |journal=Chest |volume=120 |issue=4 |pages=1333–1339 |doi=10.1378/chest.120.4.1333 |issn=0012-3692 |pmid=11591579}}</ref><ref name=":21">Larsen, C.R., Oestergaard, J., Ottesen, B.S., and Soerensen, J.L. "The efficacy of virtual reality simulation training in laparoscopy: a systematic review of randomized trials". ''Acta Obstetricia et Gynecologica Scandinavica''. 2012; 91: 1015–1028</ref><ref name=":22">{{Cite journal |last1=Yu |first1=Peng |last2=Pan |first2=Junjun |last3=Wang |first3=Zhaoxue |last4=Shen |first4=Yang |last5=Li |first5=Jialun |last6=Hao |first6=Aimin |last7=Wang |first7=Haipeng |date=2022-02-10 |title=Quantitative influence and performance analysis of virtual reality laparoscopic surgical training system |journal=BMC Medical Education |volume=22 |issue=1 |pages=92 |doi=10.1186/s12909-022-03150-y |doi-access=free |issn=1472-6920 |pmc=8832780 |pmid=35144614}}</ref> A 2020 study found that clinical students trained through VR scored higher across various areas, including [[diagnosis]], [[Surgical procedure|surgical methods]], and overall performance, compared to those taught traditionally.<ref name=":10">{{Cite journal |last1=Alcala |first1=Nicolas |last2=Piazza |first2=Martin |last3=Hobbs |first3=Gene |last4=Quinsey |first4=Carolyn |date=2021-09-28 |title=Assessment of Contemporary Virtual Reality Programs and 3D Atlases in Neuroanatomical and Neurosurgical Education |url=https://cjim.pub/index.php/cjim/article/view/572 |journal=Carolina Journal of Interdisciplinary Medicine |volume=1 |issue=1 |doi=10.47265/cjim.v1i1.572 |issn=2692-0549|doi-access=free }}</ref> Trainees may use real instruments and video equipment to practice in simulated surgeries.<ref name="auto">{{cite journal |last1=Alaraj |first1=Ali |last2=Lemole |first2=MichaelG |last3=Finkle |first3=JoshuaH |last4=Yudkowsky |first4=Rachel |last5=Wallace |first5=Adam |last6=Luciano |first6=Cristian |last7=Banerjee |first7=PPat |last8=Rizzi |first8=SilvioH |last9=Charbel |first9=FadyT |date=2011 |title=Virtual reality training in neurosurgery: Review of current status and future applications |journal=Surgical Neurology International |volume=2 |issue=1 |page=52 |doi=10.4103/2152-7806.80117 |pmc=3114314 |pmid=21697968 |doi-access=free}}</ref> Through the revolution of computational analysis abilities, fully immersive VR models are currently available in neurosurgery training. Ventriculostomy catheters insertion, [[Endoscopy|endoscopic]] and endovascular simulations are used in neurosurgical residency training centers across the world. Experts see VR training as an essential part of the curriculum of future training of neurosurgeons.<ref name="auto" />
In one of these studies for example from 2022, Participants were given a touch-screen monitor, two surgical handlers, and two-foot pedals that were designed to emulate a real world laparoscopic simulator
[[File:12909_2022_3150_Fig2_HTML.webp|center|thumb|499x499px|The three tests tested in the 2022 study (from left to right) peg transfer, picking beans, and threading skill practice.]]
[[File:12909_2022_3150_Fig3_HTML.webp|center|thumb|499x499px|The virtual reality simulator from the 2022 study, depicting (from left to right) fixed point hemostasis, peg transfer, picking beams and colon resection]]
Line 96:
=== VR Usage In Medical Fields ===
Virtual reality (VR) technology has emerged as a significant tool in medical training and education. Specifically, there has been a major leap in innovation in surgical simulation and surgical real-time enhancement
Studies show significant improvement in task completion time and scores after 4-week training sessions. This simulation environment also allows surgeons to practice without risk to real patients, promoting patient safety
Based on data from research conducted by the University Hospitals Schleswig-Holstein and collaborators from other institutions, medical students and surgeons with years of experience, show marked performance boosts after practicing with VR technology.
Another recent study at North Carolina University of Chapel Hill has shown that developing VR systems has allowed for laparoscopic imaging integration, real-time skin layer visualization, and enhanced surgical precision capabilities
These are examples of how studies have shown surgeons can take advantage of additional virtual reality simulation practices, which can create incredible experiences, provide customized scenarios, and provide independent learning with haptic feedback
Other studies in VR have used VR to improve Type and Screen (T&S) procedural training for medical practitioners, addressing the challenges of traditional training methods. T&S is critical for blood typing and antibody screening to ensure patient safety during transfusions
Lastly, there was a study done on two VR platforms, Oculus and Gear VR, to evaluate their effectiveness in teaching medical and health science students about spinal anatomy
Some potential future challenges of this technology would be enhancing complex scenarios alongside the realism aspects. These technologies would need to incorporate stress-inducing factors along with other realistic simulation ideas. Furthermore, there would be a strong need to keep things cost-effective with an abundance of availability
=== Military training ===
|