Content deleted Content added
No edit summary |
Gouwsxander (talk | contribs) Rewrites third paragraph of introduction to make more general (removes reference to 'n') and gives names to the relaxation and excitation. |
||
Line 5:
In [[atomic physics]] and [[chemistry]], an '''atomic electron transition''' (also called an atomic transition, quantum jump, or quantum leap) is an [[electron]] changing from one [[energy level]] to another within an [[atom]]<ref>Schombert, James. [http://abyss.uoregon.edu/~js/cosmo/lectures/lec08.html "Quantum physics"] University of Oregon Department of Physics</ref> or [[artificial atom]].<ref>{{Cite journal |arxiv = 1009.2969|bibcode = 2011PhRvL.106k0502V|title = Observation of Quantum Jumps in a Superconducting Artificial Atom|journal = Physical Review Letters|volume = 106|issue = 11|pages = 110502|last1 = Vijay|first1 = R|last2 = Slichter|first2 = D. H|last3 = Siddiqi|first3 = I|year = 2011|doi = 10.1103/PhysRevLett.106.110502|pmid = 21469850| s2cid=35070320 }}</ref> The time scale of a quantum jump has not been measured experimentally. However, the [[Franck–Condon principle]] binds the upper limit of this parameter to the order of [[Attosecond|attoseconds]].<ref>{{Cite journal |last1=de la Peña |first1=L. |last2=Cetto |first2=A. M. |last3=Valdés-Hernández |first3=A. |date=2020-12-04 |title=How fast is a quantum jump? |url=https://www.sciencedirect.com/science/article/pii/S0375960120307477 |journal=Physics Letters A |volume=384 |issue=34 |pages=126880 |doi=10.1016/j.physleta.2020.126880 |issn=0375-9601|arxiv=2009.02426 |bibcode=2020PhLA..38426880D }}</ref>
Electrons
== History ==
|