Lemniscate elliptic functions: Difference between revisions

Content deleted Content added
m replace copyright infringing link to McKean/Moll book to an internet archive scan gated behind a 'borrow' feature
m Specific values: <math display="block"> \begin{array} \left( \right)
Tag: Reverted
Line 291:
which can be compared to the cyclotomic analog
:<math>\operatorname{deg}\Phi_{k}=k\prod_{p|k}\left(1-\frac{1}{p}\right).</math>
 
 
 
===Specific values===
Line 296 ⟶ 298:
Just as for the trigonometric functions, values of the lemniscate functions can be computed for divisions of the lemniscate into {{math|''n''}} parts of equal length, using only basic arithmetic and square roots, if and only if {{math|''n''}} is of the form <math>n = 2^kp_1p_2\cdots p_m</math> where {{math|''k''}} is a non-negative [[integer]] and each {{math|''p''<sub>''i''</sub>}} (if any) is a distinct [[Fermat prime]].<ref>{{harvp|Rosen|1981}}</ref>
 
<math display="block">
{| class="wikitable"
\begin{array}{|c|cc|}
|-
! <math>n</math> !!& <math>\operatorname{cl}n\varpi</math> !!& <math>\operatorname{sl}n\varpi</math>
\\
|-
\hline
| <math> 1</math>
1
| <math> -1</math>
& -1
| <math> 0</math>
& 0
|-
\\
|<math> \tfrac{5}{6}</math>
|<math> -\sqrt[4]{2\sqrt{3}-3}</math>
|<math>& \tfrac12\bigl(\sqrt{3}+1-\sqrt[4]{12}2\bigr)</math>sqrt{3}-3}
|& <math> \tfrac12\biglleft(\sqrt{3}+1-\sqrt[4]{12}\bigrright)</math>
|-
\\
|<math> \tfrac{3}{4}</math>
|<math> -\sqrt{\sqrt2-1}</math>
|<math>& -\sqrt{\sqrt2-1}</math>
|<math>& -\sqrt{\sqrt2-1}</math>
|-
\\
| <math> \tfrac{2}{3}</math>
| <math> -\tfrac12\bigl(\sqrt{3}+1-\sqrt[4]{12}\bigr)</math>
|& <math> -\sqrt[4]{2tfrac12\left(\sqrt{3}+1-3\sqrt[4]{12}</math>\right)
|<math>& -\sqrt[4]{2\sqrt{3}-3}</math>
|-
\\
| <math> \tfrac{1}{2}</math>
| <math> 0</math>
& 0
| <math> 1</math>
& 1
|-
\\
| <math> \tfrac{1}{3}</math>
| <math> \tfrac12\bigl(\sqrt{3}+1-\sqrt[4]{12}\bigr)</math>
|& <math> \sqrt[4]{2tfrac12\left(\sqrt{3}+1-3\sqrt[4]{12}</math>\right)
|<math>& \sqrt[4]{2\sqrt{3}-3}</math>
|-
\\
| <math> \tfrac{1}{4}</math>
| <math> \sqrt{\sqrt2-1}</math>
|& <math> \sqrt{\sqrt2-1}</math>
|& <math> \sqrt{\sqrt2-1}</math>
|-
\\
|<math> \tfrac{1}{6}</math>
|<math> \sqrt[4]{2\sqrt{3}-3}</math>
|<math>& \tfrac12\bigl(sqrt[4]{2\sqrt{3}+1-\sqrt[4]{123}\bigr)</math>
|& <math> -\tfrac12\biglleft(\sqrt{3}+1-\sqrt[4]{12}\bigrright)</math>
|}
\end{array}
| <math> 1</math>
 
== Relation to geometric shapes ==