Content deleted Content added
Citation bot (talk | contribs) Removed parameters. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Artificial intelligence engineering | #UCB_Category 24/30 |
m I added a period separating one sentence into two. |
||
Line 3:
{{artificial intelligence}}
'''Explainable AI''' ('''XAI'''), often overlapping with '''interpretable AI''', or '''explainable machine learning''' ('''XML''')
XAI hopes to help users of AI-powered systems perform more effectively by improving their understanding of how those systems reason.<ref>{{Cite journal|last=Alizadeh|first=Fatemeh|date=2021|title=I Don't Know, Is AI Also Used in Airbags?: An Empirical Study of Folk Concepts and People's Expectations of Current and Future Artificial Intelligence|url=https://www.researchgate.net/publication/352638184|journal=Icom|volume=20 |issue=1 |pages=3–17 |doi=10.1515/icom-2021-0009|s2cid=233328352}}</ref> XAI may be an implementation of the social [[right to explanation]].<ref name=":0">{{Cite journal|last1=Edwards|first1=Lilian|last2=Veale|first2=Michael|date=2017|title=Slave to the Algorithm? Why a 'Right to an Explanation' Is Probably Not the Remedy You Are Looking For|journal=Duke Law and Technology Review|volume=16|pages=18|ssrn=2972855}}</ref> Even if there is no such legal right or regulatory requirement, XAI can improve the [[user experience]] of a product or service by helping end users trust that the AI is making good decisions.<ref>{{Cite web |last=Do Couto |first=Mark |date=February 22, 2024 |title=Entering the Age of Explainable AI |url=https://tdwi.org/Articles/2024/02/22/ADV-ALL-Entering-the-Age-of-Explainable-AI.aspx |access-date=2024-09-11 |website=TDWI}}</ref> XAI aims to explain what has been done, what is being done, and what will be done next, and to unveil which information these actions are based on.<ref name=":3">{{Cite journal|last1=Gunning|first1=D.|last2=Stefik|first2=M.|last3=Choi|first3=J.|last4=Miller|first4=T.|last5=Stumpf|first5=S.|last6=Yang|first6=G.-Z.|date=2019-12-18|title=XAI-Explainable artificial intelligence|url=https://openaccess.city.ac.uk/id/eprint/23405/|journal=Science Robotics|language=en|volume=4|issue=37|pages=eaay7120|doi=10.1126/scirobotics.aay7120|pmid=33137719|issn=2470-9476|doi-access=free}}</ref> This makes it possible to confirm existing knowledge, challenge existing knowledge, and generate new assumptions.<ref>{{Cite journal|last1=Rieg|first1=Thilo|last2=Frick|first2=Janek|last3=Baumgartl|first3=Hermann|last4=Buettner|first4=Ricardo|date=2020-12-17|title=Demonstration of the potential of white-box machine learning approaches to gain insights from cardiovascular disease electrocardiograms|journal=PLOS ONE|language=en|volume=15|issue=12|pages=e0243615|doi=10.1371/journal.pone.0243615|issn=1932-6203|pmc=7746264|pmid=33332440|bibcode=2020PLoSO..1543615R|doi-access=free}}</ref>
|