Content deleted Content added
mNo edit summary Tags: Visual edit Mobile edit Mobile web edit |
No edit summary Tags: Visual edit Mobile edit Mobile web edit |
||
Line 11:
This theoretical performance is made possible using a flexible design method that is based on sparse [[Tanner graph|Tanner graphs]] (specialized [[bipartite graph|bipartite graphs]]).<ref>{{citation |author=Amin Shokrollahi |url=http://www.ics.uci.edu/~welling/teaching/ICS279/LPCD.pdf |title=LDPC Codes: An Introduction |archive-url=https://web.archive.org/web/20170517034849/http://www.ics.uci.edu/~welling/teaching/ICS279/LPCD.pdf |archive-date=2017-05-17}}</ref>
==History==
LDPC codes were originally invented by [[Robert G. Gallager]] (and are thus also known as Gallager codes). Gallager developed the LDPC concept in his doctoral dissertation at the [[Massachusetts Institute of Technology]] in 1960.<ref>{{Cite news |last=Hardesty |first=L. |date=January 21, 2010 |title=Explained: Gallager codes |url=http://web.mit.edu/newsoffice/2010/gallager-codes-0121.html |access-date=August 7, 2013 |journal=MIT News}}</ref><ref name="G1962">{{cite journal |last=Gallager |first=R.G. |date=January 1962 |title=Low density parity check codes |journal=IRE Trans. Inf. Theory |volume=8 |issue=1 |pages=21–28 |doi=10.1109/TIT.1962.1057683 |s2cid=260490814 |hdl=1721.1/11804/32786367-MIT}}</ref> However, their iterative decoding algorithm (despite having linear complexity), was prohibitively computationally expensive at the time.
Renewed interest in the codes emerged following the invention of the closely-related [[turbo code]]s (1993), whose similarly iterative decoding algorithm outperformed other codes used at that time. LDPC codes were subsequently rediscovered in 1996.<ref name="MacKay96">[[David J.C. MacKay]] and Radford M. Neal, "Near Shannon Limit Performance of Low Density Parity Check Codes," Electronics Letters, July 1996</ref> Initial industry preference for LDPC codes over turbo codes stemmed from patent-related constraints on the latter<ref name="Closing">{{cite journal |author=Erico Guizzo |date=Mar 1, 2004 |title=CLOSING IN ON THE PERFECT CODE |url=https://spectrum.ieee.org/closing-in-on-the-perfect-code |url-status=dead |journal=IEEE Spectrum |archive-url=https://web.archive.org/web/20210902170851/https://spectrum.ieee.org/closing-in-on-the-perfect-code |archive-date=September 2, 2021}} "Another advantage, perhaps the biggest of all, is that the LDPC patents have expired, so companies can use them without having to pay for intellectual-property rights."</ref>. LDPC codes have been shown to have ideal combinatorial properties. In his dissertation, Gallager showed that LDPC codes achieve the [[Gilbert–Varshamov bound for linear codes]] over binary fields with high probability. In 2020 it was shown that Gallager's LDPC codes achieve [[list decoding]] capacity and also achieve the [[Gilbert–Varshamov bound for linear codes]] over general fields.<ref name="MRRSW20">{{cite journal |last1=Mosheiff |first1=J. |last2=Resch |first2=N. |last3=Ron-Zewi |first3=N. |last4=Silas |first4=S. |last5=Wootters |first5=M. |date=2020 |title=Low-Density Parity-Check Codes Achieve List-Decoding Capacity |journal=SIAM Journal on Computing |volume=53 |issue=FOCS 2020 |pages=38–73 |arxiv=1909.06430 |doi=10.1137/20M1365934 |s2cid=244549036}}</ref>
|