Lemniscate elliptic functions: Difference between revisions

Content deleted Content added
m Specific values: <math display="block"> \begin{array}
Tag: Reverted
the wikitables are just fine here
Line 291:
which can be compared to the cyclotomic analog
:<math>\operatorname{deg}\Phi_{k}=k\prod_{p|k}\left(1-\frac{1}{p}\right).</math>
 
 
 
===Specific values===
Line 298 ⟶ 296:
Just as for the trigonometric functions, values of the lemniscate functions can be computed for divisions of the lemniscate into {{math|''n''}} parts of equal length, using only basic arithmetic and square roots, if and only if {{math|''n''}} is of the form <math>n = 2^kp_1p_2\cdots p_m</math> where {{math|''k''}} is a non-negative [[integer]] and each {{math|''p''<sub>''i''</sub>}} (if any) is a distinct [[Fermat prime]].<ref>{{harvp|Rosen|1981}}</ref>
 
{| class="wikitable"
<math display="block">
|-
\begin{array}{|c|cc|}
! <math>n</math> &!! <math>\operatorname{cl}n\varpi</math> &!! <math>\operatorname{sl}n\varpi</math>
|-
\\
| <math> 1</math>
\hline
| <math> -1</math>
1
| <math> 0</math>
& -1
|-
& 0
|<math> \tfrac{5}{6}</math>
\\
|<math> -\sqrt[4]{2\sqrt{3}-3}</math>
\tfrac{5}{6}
|<math> \tfrac12\bigl(\sqrt{3}+1-\sqrt[4]{12}\bigr)</math>
& -\sqrt[4]{2\sqrt{3}-3}
|-
& \tfrac12\left(\sqrt{3}+1-\sqrt[4]{12}\right)
|<math> \tfrac{3}{4}</math>
\\
|<math> -\sqrt{\sqrt2-1}</math>
\tfrac{3}{4}
&|<math> -\sqrt{\sqrt2-1}</math>
|-
& \sqrt{\sqrt2-1}
| <math> \tfrac{2}{3}</math>
\\
| <math> -\tfrac12\bigl(\sqrt{3}+1-\sqrt[4]{12}\bigr)</math>
\tfrac{2}{3}
&| <math> -\tfrac12\left(sqrt[4]{2\sqrt{3}+1-\sqrt[4]{123}\right)</math>
|-
& \sqrt[4]{2\sqrt{3}-3}
| <math> \tfrac{1}{2}</math>
\\
| <math> 0</math>
\tfrac{1}{2}
| <math> 1</math>
& 0
|-
& 1
| <math> \tfrac{1}{3}</math>
\\
| <math> \tfrac12\bigl(\sqrt{3}+1-\sqrt[4]{12}\bigr)</math>
\tfrac{1}{3}
&| <math> \tfrac12\left(sqrt[4]{2\sqrt{3}+1-\sqrt[4]{123}\right)</math>
|-
& \sqrt[4]{2\sqrt{3}-3}
| <math> \tfrac{1}{4}</math>
\\
| <math> \sqrt{\sqrt2-1}</math>
\tfrac{1}{4}
&| <math> \sqrt{\sqrt2-1}</math>
|-
& \sqrt{\sqrt2-1}
|<math> \tfrac{1}{6}</math>
\\
|<math> \sqrt[4]{2\sqrt{3}-3}</math>
\tfrac{1}{6}
& |<math> \sqrt[4]{2tfrac12\bigl(\sqrt{3}+1-3\sqrt[4]{12}\bigr)</math>
|}
& \tfrac12\left(\sqrt{3}+1-\sqrt[4]{12}\right)
\end{array}
</math>
 
== Relation to geometric shapes ==
Line 1,011 ⟶ 1,007:
 
That table shows the most important values of the '''Hyperbolic Lemniscate Tangent and Cotangent''' functions:
{| class="wikitable"
<math display="block">
!<math>z</math>
\begin{array}{|c|rr|ll|}
!<math> \operatorname{clh} z</math>
z
& !<math> \operatorname{clhslh} z</math>
& !<math> \operatorname{slhctlh} z = \cos_{4} z</math>
& !<math> \operatorname{ctlhtlh} z = \cos_sin_{4} z</math>
|-
& \operatorname{tlh} z = \sin_{4} z
|<math> 0</math>
\\
|<math> \infty</math>
\hline
|<math> 0</math>
0
|<math> 1</math>
& \infty
|<math> 0</math>
& 0
|-
& 1
|<math> {\tfrac14}\sigma</math>
& 0
|<math> 1</math>
\\
|<math> 1</math>
{\tfrac14}\sigma
|<math> 1\big/\sqrt[4]{2}</math>
& 1
|<math> 1\big/\sqrt[4]{2}</math>
& 1
|-
& 1\big/\sqrt[4]{2}
|<math> {\tfrac12}\sigma</math>
& 1\big/\sqrt[4]{2}
|<math> 0</math>
\\
|<math> \infty</math>
{\tfrac12}\sigma
|<math> 0</math>
& 0
|<math> 1</math>
& \infty
|-
& 0
|<math> {\tfrac34}\sigma</math>
& 1
|<math> -1</math>
\\
|<math> -1</math>
{\tfrac34}\sigma
|<math> -1\big/\sqrt[4]{2}</math>
& -1
|<math> 1\big/\sqrt[4]{2}</math>
& -1
|-
& -1\big/\sqrt[4]{2}
|<math> \sigma</math>
& 1\big/\sqrt[4]{2}
|<math> \infty</math>
\\
|<math> 0</math>
\sigma
|<math> -1</math>
& \infty
|<math> 0</math>
& 0
|}
& -1
& 0
\end{array}
</math>
 
=== Combination and halving theorems ===