Content deleted Content added
m →Specific values: <math display="block"> \begin{array} Tag: Reverted |
the wikitables are just fine here |
||
Line 291:
which can be compared to the cyclotomic analog
:<math>\operatorname{deg}\Phi_{k}=k\prod_{p|k}\left(1-\frac{1}{p}\right).</math>
===Specific values===
Line 298 ⟶ 296:
Just as for the trigonometric functions, values of the lemniscate functions can be computed for divisions of the lemniscate into {{math|''n''}} parts of equal length, using only basic arithmetic and square roots, if and only if {{math|''n''}} is of the form <math>n = 2^kp_1p_2\cdots p_m</math> where {{math|''k''}} is a non-negative [[integer]] and each {{math|''p''<sub>''i''</sub>}} (if any) is a distinct [[Fermat prime]].<ref>{{harvp|Rosen|1981}}</ref>
{| class="wikitable"
|-
! <math>n</math>
|-
| <math> 1</math>
| <math> -1</math>
| <math> 0</math>
|-
|<math> \tfrac{5}{6}</math>
|<math> -\sqrt[4]{2\sqrt{3}-3}</math>
|<math> \tfrac12\bigl(\sqrt{3}+1-\sqrt[4]{12}\bigr)</math>
|-
|<math> \tfrac{3}{4}</math>
|<math> -\sqrt{\sqrt2-1}</math>
|-
| <math> \tfrac{2}{3}</math>
| <math> -\tfrac12\bigl(\sqrt{3}+1-\sqrt[4]{12}\bigr)</math>
|-
| <math> \tfrac{1}{2}</math>
| <math> 0</math>
| <math> 1</math>
|-
| <math> \tfrac{1}{3}</math>
| <math> \tfrac12\bigl(\sqrt{3}+1-\sqrt[4]{12}\bigr)</math>
|-
| <math> \tfrac{1}{4}</math>
| <math> \sqrt{\sqrt2-1}</math>
|-
|<math> \tfrac{1}{6}</math>
|<math> \sqrt[4]{2\sqrt{3}-3}</math>
|}
== Relation to geometric shapes ==
Line 1,011 ⟶ 1,007:
That table shows the most important values of the '''Hyperbolic Lemniscate Tangent and Cotangent''' functions:
{| class="wikitable"
!<math>z</math>
!<math> \operatorname{clh} z</math>
|-
|<math> 0</math>
|<math> \infty</math>
|<math> 0</math>
|<math> 1</math>
|<math> 0</math>
|-
|<math> {\tfrac14}\sigma</math>
|<math> 1</math>
|<math> 1</math>
|<math> 1\big/\sqrt[4]{2}</math>
|<math> 1\big/\sqrt[4]{2}</math>
|-
|<math> {\tfrac12}\sigma</math>
|<math> 0</math>
|<math> \infty</math>
|<math> 0</math>
|<math> 1</math>
|-
|<math> {\tfrac34}\sigma</math>
|<math> -1</math>
|<math> -1</math>
|<math> -1\big/\sqrt[4]{2}</math>
|<math> 1\big/\sqrt[4]{2}</math>
|-
|<math> \sigma</math>
|<math> \infty</math>
|<math> 0</math>
|<math> -1</math>
|<math> 0</math>
|}
=== Combination and halving theorems ===
|