Content deleted Content added
Geysirhead (talk | contribs) GA is already in the template |
Geysirhead (talk | contribs) |
||
Line 22:
===Foundational work in GP===
Early work that set the stage for current genetic programming research topics and applications is diverse, and includes [[program synthesis|software synthesis]] and repair, predictive modeling, data mining,<ref>{{Cite web|url=https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/freitas_2002_book.html|title=Data Mining and Knowledge Discovery with Evolutionary Algorithms|website=www.cs.bham.ac.uk|language=en|access-date=2018-05-20}}</ref> financial modeling,<ref>{{Cite web|url=https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/tsang_1998_eddie.html|title=EDDIE beats the bookies|website=www.cs.bham.ac.uk|language=en|access-date=2018-05-20}}</ref> soft sensors,<ref>{{Cite web|url=https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kordon_book.html|title=Applying Computational Intelligence How to Create Value|website=www.cs.bham.ac.uk|language=en|access-date=2018-05-20}}</ref> design,<ref>{{Cite web|url=https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_aiedam_Koza08.html|title=Human-competitive machine invention by means of genetic programming|website=www.cs.bham.ac.uk|language=en|access-date=2018-05-20}}</ref> and image processing.<ref>{{Cite web|url=https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/lam_doh_gecco2004.html|title=Discovery of Human-Competitive Image Texture Feature Extraction Programs Using Genetic Programming|website=www.cs.bham.ac.uk|language=en|access-date=2018-05-20}}</ref> Applications in some areas, such as design, often make use of intermediate representations,<ref>{{Cite web|url=https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/bentley_1999_TWGDACEEDP.html|title=Three Ways to Grow Designs: A Comparison of Embryogenies for an Evolutionary Design Problem|website=www.cs.bham.ac.uk|language=en|access-date=2018-05-20}}</ref> such as Fred Gruau's cellular encoding.<ref>{{Cite journal|url=https://ieeexplore.ieee.org/document/243137|title=Cellular encoding as a graph grammar - IET Conference Publication|pages=17/1–1710|website=[[IEEE]]|language=en-US|access-date=2018-05-20|date=April 1993}}</ref> Industrial uptake has been significant in several areas including finance, the chemical industry, bioinformatics<ref>{{Cite web|url=https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/taylor_1998_gadiirsab.html|title=Genetic Algorithm Decoding for the Interpretation of Infra-red Spectra in Analytical Biotechnology|website=www.cs.bham.ac.uk|language=en|access-date=2018-05-20}}</ref><ref>{{Cite web|url=https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2004_GPEM.html|title=Genetic Programming for Mining DNA Chip data from Cancer Patients|website=www.cs.bham.ac.uk|language=en|access-date=2018-05-20}}</ref> and the steel industry.<ref>{{Cite web|url=https://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kovacic_2009_MMP2.html|title=Genetic Programming and Jominy Test Modeling|website=www.cs.bham.ac.uk|language=en|access-date=2018-05-20}}</ref>
===Timeline of GP===
{| class="wikitable sortable"
|+ Timeline of EP - selected algorithms<ref name=overview>{{cite journal |last1=Slowik |first1=Adam |last2=Kwasnicka |first2=Halina |title=Evolutionary algorithms and their applications to engineering problems |journal=Neural Computing and Applications |date=1 August 2020 |volume=32 |issue=16 |pages=12363–12379 |doi=10.1007/s00521-020-04832-8 |url=https://link.springer.com/article/10.1007/s00521-020-04832-8 |language=en |issn=1433-3058}}</ref>
|-
! Year !! Description !! Reference
|-
| 1992 || Introduction of GP as genetically bred populations of computer programs || <ref>{{cite journal |last1=Koza |first1=J. R. G. P. |title=On the programming of computers by means of natural selection |journal=Genetic programming |date=1992}}</ref>
|-
| 2000 || Cartesian GP ||
|-
| 2000 || Grammar-guided GP ||
|-
| 2001 || Gene expression programming ||
|-
| 2012 || Multi-gene GP ||
|-
| 2012 || Geometric semantic GP ||
|-
| 2015 || Surrogate GP ||
|-
| 2015 || Memetic semantic GP ||
|-
| 2017 || Statistical GP ||
|-
| 2018 || Multi-dimensional GP ||
|}
==Methods==
|