Fattore di scala: differenze tra le versioni

Contenuto cancellato Contenuto aggiunto
m Kirk39 ha spostato la pagina Fattore di scala (cosmologia) a Fattore di scala: non c'è motivo per disambiguare
Recupero di 1 fonte/i e segnalazione di 0 link interrotto/i.) #IABot (v2.0.9
Riga 28:
e sostituendo la definizione di cui sopra del parametro di Hubble si ottiene <math>\dot{d}(t) = H(t) d(t)</math> che è semplicemente la [[legge di Hubble]].
 
Le prove attuali suggeriscono che il [[Universo in accelerazione|tasso di espansione dell'universo sta accelerando]], il che significa che la derivata seconda del fattore di scala <math>\ddot{a}(t)</math> è positiva, o equivalentemente che la derivata prima <math>\dot{a}(t)</math> sta aumentando nel tempo.<ref>{{Cita libro|autore=Mark H. Jones|nome=|autore2=Robert J. Lambourne|titolo=An Introduction to Galaxies and Cosmology|data=2004|editore=Cambridge University Press|p=[https://books.google.com/books?id=36K1PfetZegC&lpg=PP1&pg=PA244 244]|ISBN=978-0-521-83738-5}}</ref> Ciò implica anche che una data galassia si allontana da noi con velocità crescente nel tempo, cioè che per quella galassia <math>\dot{d}(t)</math> sta aumentando con il tempo. Al contrario, il parametro di Hubble sembra diminuire con il tempo, il che significa che si considera una certa distanza fissa d e si guarda una serie di galassie diverse passare quella distanza, le galassie successive passerebbero quella distanza a una velocità inferiore rispetto a quelle precedenti.<ref>{{Cita web|url=https://web.archive.org/web/20101128035752/http://curious.astro.cornell.edu/question.php?number=575|titolo=Is the universe expanding faster than the speed of light?|accesso=24 maggio 2021|dataarchivio=28 novembre 2010|urlarchivio=https://web.archive.org/web/20101128035752/http://curious.astro.cornell.edu/question.php?number=575|urlmorto=sì}} Capoverso finale</ref>
 
Secondo la [[metrica di Friedmann-Lemaître-Robertson-Walker]] che viene utilizzata per modellizzare l'universo in espansione, se attualmente riceviamo luce da un oggetto distante con uno [[spostamento verso il rosso]] ''z'', allora il fattore di scala nel momento in cui l'oggetto ha originariamente emesso quella luce è <math>a(t) = \tfrac{1}{1 + z}</math> .<ref>{{Cita libro|autore=Paul Davies|anno=1992|titolo=The New Physics}} [https://books.google.com/books?id=akb2FpZSGnMC&lpg=PP1&pg=PA187 p. 187].</ref><ref>{{Cita libro|autore=V. F. Mukhanov|anno=2005|titolo=Physical Foundations of Cosmology}} [https://books.google.com/books?id=1TXO7GmwZFgC&lpg=PP1&pg=PA58 p. 58].</ref>