Content deleted Content added
→Neural NLP (present): These are the same paradigm/subparadigm |
|||
Line 26:
*'''2000s''': With the growth of the web, increasing amounts of raw (unannotated) language data have become available since the mid-1990s. Research has thus increasingly focused on [[unsupervised learning|unsupervised]] and [[semi-supervised learning]] algorithms. Such algorithms can learn from data that has not been hand-annotated with the desired answers or using a combination of annotated and non-annotated data. Generally, this task is much more difficult than [[supervised learning]], and typically produces less accurate results for a given amount of input data. However, there is an enormous amount of non-annotated data available (including, among other things, the entire content of the [[World Wide Web]]), which can often make up for the inferior results if the algorithm used has a low enough [[time complexity]] to be practical.
In 2003, [[word n-gram language model|word n-gram model]], at the time the best statistical algorithm, was outperformed by a [[multi-layer perceptron]] (with a single hidden layer and context length of several words trained on up to 14 million of words with a CPU cluster in [[language model]]ling) by [[Yoshua Bengio]] with co-authors.<ref>{{Cite journal|url=https://dl.acm.org/doi/10.5555/944919.944966|title=A neural probabilistic language model|first1=Yoshua|last1=Bengio|first2=Réjean|last2=Ducharme|first3=Pascal|last3=Vincent|first4=Christian|last4=Janvin|date=March 1, 2003|journal=The Journal of Machine Learning Research|volume=3|pages=1137–1155|via=ACM Digital Library}}</ref>
|