Policy gradient method: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Add: arxiv, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Cosmia Nebula | #UCB_webform
Line 156:
* <math display="inline">\gamma^j \left(R_j + \gamma R_{j+1} + \gamma^2 V^{\pi_\theta}( S_{j+2}) - V^{\pi_\theta}( S_{j})\right)</math>: 2-step TD learning.
* <math display="inline">\gamma^j \left(\sum_{k=0}^{n-1} \gamma^k R_{j+k} + \gamma^n V^{\pi_\theta}( S_{j+n}) - V^{\pi_\theta}( S_{j})\right)</math>: n-step TD learning.
* <math display="inline">\gamma^j \sum_{n=1}^\infty \frac{\lambda^{n-1}}{1-\lambda}\cdot \left(\sum_{k=0}^{n-1} \gamma^k R_{j+k} + \gamma^n V^{\pi_\theta}( S_{j+n}) - V^{\pi_\theta}( S_{j})\right)</math>: TD(λ) learning, also known as '''GAE (generalized advantage estimate)'''.<ref>{{Citation |lastlast1=Schulman |firstfirst1=John |title=High-Dimensional Continuous Control Using Generalized Advantage Estimation |date=2018-10-20 |url=https://arxiv.org/abs/1506.02438 |doiarxiv=10.48550/arXiv.1506.02438 |last2=Moritz |first2=Philipp |last3=Levine |first3=Sergey |last4=Jordan |first4=Michael |last5=Abbeel |first5=Pieter}}</ref> This is obtained by an exponentially decaying sum of the n-step TD learning ones.
 
== Natural policy gradient ==
Line 311:
{{Anchor|GRPO}}
 
The Group Relative Policy Optimization (GRPO) is a minor variant of PPO that omits the value function estimator <math>V</math>. Instead, for each state <math>s_i </math>, it samples multiple actions <math>a_{i,1}, \dots, a_{i,G} </math> from the policy <math>\pi_{\theta_t} </math>, then calculate the group-relative advantage<ref name=":1">{{Citation |lastlast1=Shao |firstfirst1=Zhihong |title=DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models |date=2024-04-27 |url=https://arxiv.org/abs/2402.03300 |publisherarxiv=arXiv |doi=10.48550/arXiv.2402.03300 |id=arXiv:2402.03300 |last2=Wang |first2=Peiyi |last3=Zhu |first3=Qihao |last4=Xu |first4=Runxin |last5=Song |first5=Junxiao |last6=Bi |first6=Xiao |last7=Zhang |first7=Haowei |last8=Zhang |first8=Mingchuan |last9=Li |first9=Y. K.}}</ref><math display="block">A^{\pi_{\theta_t}}(s_{i}, a_{i,j}) = \frac{r(s_i, a_{i,j}) - \mu}{\sigma} </math>where <math>\mu, \sigma </math> are the mean and standard deviation of <math>r(s, a_1), \dots, r(s, a_G) </math>. That is, it is the [[standard score]] of the rewards.
 
Then, it maximizes the PPO objective, averaged over all actions:<math display="block">