Content deleted Content added
Citation bot (talk | contribs) Altered journal. Add: doi, volume, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Articles needing cleanup from January 2025 | #UCB_Category 263/322 |
|||
Line 12:
|title = Parameter Estimation for Scientists and Engineers |edition=online
|publisher = John Wiley & Sons
|
|pages = 259–263
|doi = 10.1002/9780470173862 |doi-access=
Line 342:
<math display="block"> \max_{i,j} \left|m_{ij}\right| \leq \max_i m_{ii}</math>
An <math>n \times n</math> Hermitian matrix <math>M</math> is positive definite if it satisfies the following trace inequalities:<ref>{{cite journal | title=Bounds for Eigenvalues using Traces |
<math display="block">\operatorname{tr}(M) > 0 \quad \mathrm{and} \quad \frac{(\operatorname{tr}(M))^2}{\operatorname{tr}(M^2)} > n-1 ~.</math>
Line 352:
Regarding the Hadamard product of two positive semidefinite matrices <math>M = (m_{ij}) \geq 0,</math> <math>N \geq 0,</math> there are two notable inequalities:
* Oppenheim's inequality: <math>\det(M \circ N) \geq \det (N) \prod\nolimits_i m_{ii} ~.</math><ref>{{harvtxt|Horn|Johnson|2013}}, p. 509, Theorem 7.8.16</ref>
* <math>\det(M \circ N) \geq \det(M) \det(N) ~.</math><ref name=styan1973>{{cite journal |last=Styan |first=G.P. |year=1973 |title=Hadamard products and multivariate statistical analysis |journal=[[Linear Algebra and Its Applications]] |volume=6 |pages=217–240 |doi=10.1016/0024-3795(73)90023-2 }}, Corollary 3.6, p. 227</ref>
===Kronecker product===
Line 454:
* {{cite journal
|
|last2=Toupin |first2=R.A.
|year=1962
|