Content deleted Content added
m clean up spacing around commas and other punctuation, replaced: ; → ; |
Introduction |
||
Line 3:
{{Machine learning|Artificial neural network}}
'''Recurrent neural networks
The fundamental building block of RNNs is the '''recurrent unit''', which maintains a '''hidden state'''—a form of memory that is updated at each time step based on the current input and the previous hidden state. This feedback mechanism allows the network to learn from past inputs and incorporate that knowledge into its current processing. RNNs have been successfully applied to tasks such as unsegmented, connected [[handwriting recognition]],<ref>{{cite journal |last1=Graves |first1=Alex |author-link1=Alex Graves (computer scientist) |last2=Liwicki |first2=Marcus |last3=Fernandez |first3=Santiago |last4=Bertolami |first4=Roman |last5=Bunke |first5=Horst |last6=Schmidhuber |first6=Jürgen |author-link6=Jürgen Schmidhuber |year=2009 |title=A Novel Connectionist System for Improved Unconstrained Handwriting Recognition |url=http://www.idsia.ch/~juergen/tpami_2008.pdf |journal=IEEE Transactions on Pattern Analysis and Machine Intelligence |volume=31 |issue=5 |pages=855–868 |
In recent years, [[Transformer (deep learning architecture)|Transformers]], which rely on self-attention mechanisms instead of recurrence, have become the dominant architecture for many sequence-processing tasks, particularly in natural language processing, due to their superior handling of long-range dependencies and greater parallelizability. Nevertheless, RNNs remain relevant for applications where computational efficiency, real-time processing, or the inherent sequential nature of data is crucial.
▲RNNs have been applied to tasks such as unsegmented, connected [[handwriting recognition]],<ref>{{cite journal |last1=Graves |first1=Alex |author-link1=Alex Graves (computer scientist) |last2=Liwicki |first2=Marcus |last3=Fernandez |first3=Santiago |last4=Bertolami |first4=Roman |last5=Bunke |first5=Horst |last6=Schmidhuber |first6=Jürgen |author-link6=Jürgen Schmidhuber |title=A Novel Connectionist System for Improved Unconstrained Handwriting Recognition |url=http://www.idsia.ch/~juergen/tpami_2008.pdf |journal=IEEE Transactions on Pattern Analysis and Machine Intelligence |volume=31 |issue=5 |pages=855–868 |year=2009 |doi=10.1109/tpami.2008.137 |pmid=19299860 |citeseerx=10.1.1.139.4502 |s2cid=14635907 }}</ref> [[speech recognition]],<ref name="sak2014">{{Cite web |url=https://research.google.com/pubs/archive/43905.pdf |publisher=Google Research |title=Long Short-Term Memory recurrent neural network architectures for large scale acoustic modeling |last1=Sak |first1=Haşim |last2=Senior |first2=Andrew |last3=Beaufays | first3=Françoise |year=2014 }}</ref><ref name="liwu2015">{{cite arXiv |last1=Li |first1=Xiangang |last2=Wu |first2=Xihong |date=2014-10-15 |title=Constructing Long Short-Term Memory based Deep Recurrent Neural Networks for Large Vocabulary Speech Recognition |eprint=1410.4281 |class=cs.CL }}</ref> [[natural language processing]], and [[neural machine translation]].<ref>{{Cite journal |last=Dupond |first=Samuel |date=2019 |title=<!-- for sure correct title? not found, nor in archive.org (for 2020-02-13), nor Volume correct? 2019 is vol 47-48 and 41 from 2016--> A thorough review on the current advance of neural network structures. |url=https://www.sciencedirect.com/journal/annual-reviews-in-control |journal=Annual Reviews in Control |volume=14 |pages=200–230}}</ref><ref>{{Cite journal |last1=Abiodun |first1=Oludare Isaac |last2=Jantan |first2=Aman |last3=Omolara |first3=Abiodun Esther |last4=Dada |first4=Kemi Victoria |last5=Mohamed |first5=Nachaat Abdelatif |last6=Arshad |first6=Humaira |date=2018-11-01 |title=State-of-the-art in artificial neural network applications: A survey |journal=Heliyon |volume=4 |issue=11 |pages=e00938 |bibcode=2018Heliy...400938A |doi=10.1016/j.heliyon.2018.e00938 |issn=2405-8440 |pmc=6260436 |pmid=30519653 |doi-access=free}}</ref>
==History==
|